期刊文献+

琥珀酸脱氢酶或琥珀酰辅酶A合成酶缺失促进大肠杆菌积累5-氨基乙酰丙酸 被引量:4

Deficiency of succinic dehydrogenase or succinyl-CoA synthetase enhances the production of 5-aminolevulinic acid in recombinant Escherichia coli
原文传递
导出
摘要 5-氨基乙酰丙酸(ALA)是生物体内四吡咯类化合物的合成前体,在农业及医药领域应用广泛,是极具开发价值的高附加值生物基化学品。目前利用外源C4途径的重组大肠杆菌发酵生产ALA的研究主要利用LB培养基并添加葡萄糖和琥珀酸、甘氨酸等合成前体,成本较高。琥珀酸在C4途径中以琥珀酰辅酶A的形式直接参与ALA的合成。文中在以葡萄糖为主要碳源的无机盐培养基中研究了琥珀酰辅酶A下游代谢途径琥珀酸脱氢酶编码基因sdhAB和琥珀酰辅酶A合成酶编码基因sucCD缺失对ALA积累的影响。与仅表达异源ALA合成酶的对照菌株相比,sdhAB和sucCD缺失菌株ALA的产量分别提高了25.59%和12.40%,且ALA的积累不依赖于琥珀酸的添加和LB培养基的使用,从而大幅降低了生产成本,显示出良好的工业应用前景。 5-aminolevulinic acid (ALA), a precursor for biosynthesis of pyrrole compounds in living organisms, has been widely used in agriculture and medical photodynamics therapy and is regarded as a promising value-added bio-based chemical. In the previous investigations on ALA production with recombinant Escherichia coli expressing heterogenous C4 pathway gene, LB media supplemented with glucose and ALA precursors succinate and glycine is widely used, leading to high production cost. Succinate participates in ALA biosynthesis in a form of succinyl-CoA. In this study, genes involved in succinyl-CoA consumption, sdhAB (encoding succinic dehydrogenase) or sucCD (encoding succinyl-CoA synthetase) of E. coli MG1655 was knocked out and tested for ALA accumulation. In comparison with the recombinant E. coli strain expressing heterogenous ALA synthetase, the sdhAB- or sucCD-deficient strain accumulate 25.59% and 12.40%, respectively, more ALA in a 5 L fermentor using a defined synthetic medium with glucose as main carbon source and without supplementation of succinate, providing a novel cost-effective approach for industrial production of ALA.
出处 《生物工程学报》 CAS CSCD 北大核心 2013年第10期1494-1503,共10页 Chinese Journal of Biotechnology
基金 国家自然科学基金(No.31070037) 中国科学院知识创新工程项目(No.KSCX2-E-W-Q-13) 天津市科技支撑计划重大项目(No.11ZCZDSY08500)资助~~
关键词 5-氨基乙酰丙酸 琥珀酸脱氢酶 琥珀酰辅酶A合成酶 大肠杆菌 基因敲除 5-aminolevulinic acid succinic dehydrogenase succinyl-CoA synthetase Escherichia coli gene knock out
  • 相关文献

参考文献24

  • 1Sasaki K, Watanabe M, Tanaka T. Biosynthesis, biotechnological production and applications of 5-aminolevulinic acid. Appl Microbiol Biotechnol, 2002,58(1): 23-29.
  • 2Kennedy JC, Pottier RH, Pross DC. Photodynamic therapy with endogenous protoporphyrin IX: basic principles and present clinical experience. J Photochem Photobiol B, 1990,6(1/2): 143-148.
  • 3Preuf M, Renner C, Krupp W, et al. The use of 5-aminolevulinic acid fluorescence guidance in resection of pediatric brain tumors. Childs Nerv Syst, 2013,29: 1263-1267.
  • 4Edwards S, Jackson D, Reynoldson J, et al. Neuropharmacology of delta-aminolaevulinic acid. II. Effect of chronic administration in mice. Neurosci Lett, 1984,50(113): 169-173.
  • 5赵艳艳,胡晓辉,邹志荣,燕飞.不同浓度5-氨基乙酰丙酸(ALA)浸种对NaCl胁迫下番茄种子发芽率及芽苗生长的影响[J].生态学报,2013,33(1):62-70. 被引量:70
  • 6Miyachi N, Tanaka T, Nishikawa S, et al. Preparation and chemical properties of 5-aminolevulinic acid and its derivatives. Porphyrins, 1998,7(2/3): 342-347.
  • 7Burnham BF. o-Aminolevulinic acid synthase (Rhodopseudomonas sphaeroides). Methods Enzymol, 1970, 17 A: 195-204.
  • 8Schon A, Krupp G, Gough S, et al. The RNA required in the first step of chlorophyll biosynthesis is a chloroplast glutamate tRNA. Nature, 1986, 322(6076): 281-284.
  • 9Nishikawa S, Watanabe K, Tanaka T, et al. Rhodobacter sphaeroides mutants which accumulate 5-aminolevulinic acid under aerobic and dark conditions. J Biosci Bioeng, 1999, 87(6): 798-804.
  • 10Kamiyama H, Hotta Y, Tanaka T, et al. Production of 5-aminolevulinic acid by a mutant strain of a Photosynthetic bacterium. J Biosci Bioeng, 2000, 78(2): 48-55.

二级参考文献57

共引文献72

同被引文献37

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部