期刊文献+

构建基于小波熵的自训练半监督支持向量机分类模型评价老年人步态 被引量:4

The Self-Training Semi-Supervised Support Vector Machine Based on Wavelet Entropy for the Evaluation of the Elderly Gait
下载PDF
导出
摘要 研究应用半监督学习算法分析未标注步态数据评价老年人步态,提出基于小波熵的自训练半监督支持向量机步态分类模型,通过小波熵从未标注步态数据中选取为每次自训练步态分类模型所需最具信息量的标注样本,有效获取步态数据类别间和步态数据内在的"有价值"的步态变异信息,提高步态分类器的泛化性能。首先采用10名老年人和10名青年人步态数据构建支持向量机分类模型,然后对120名不同年龄组未标注步态数据分类预测,依据小波熵选取样本数据,逐步添加更新步态样本训练集,自训练支持向量机分类模型。实验结果表明,本算法较准确鉴别青年和老年人步态模式(分类正确率90%),比基于有监督学习的支持向量机步态分类算法正确率提高近5%,有效改善支持向量机步态分类算法性能,有望为临床提供一个评价老年人步态的新方法。 This work investigated the application of the semi-supervised learning algorithm to analysis of the unlabeled gait data for evaluating the elderly gait. The novel gait classification algorithm that the self-training semi-supervised support vector machine (SVM) based on wavelet entropy for the discrimination between the young and elderly gait pattern was addressed. In the self-training, wavelet entropy was employed to obtain labeled samples from unlabeled dataset. The most valuable information related to the gait change was acquired for current gait classifier model, which obviously improved the gait classification performance of SVM. The labeled gait sample datasets including 10 young and 10 elderly participants were used to develop SVM that was employed to classify the unlabelled gait dataset from 120 subjects of different age groups. The new labeled gait data, obtained by our defined wavelet entropy, were selected and constructed the new sample train dataset for developing self-training SVM. The experimental results showed that the accuracy of our proposed algorithm is 90% in recognization of the young and elderly gait pattern. Furthermore, the accuracy of our proposed algorithm was increased approximately 5% compared with that of the classification algorithm by the supervised support vector machine, suggesting that our proposed technique can obtain more information related to gait change from the labeled and unlabeled gait dataset, and provides a new tool for assessment of elder gait.
作者 吴建宁 伍滨
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2013年第5期588-594,共7页 Chinese Journal of Biomedical Engineering
基金 福建省自然科学基金(2013J01220) 福建省教育厅(B类)项目(JB12032)
关键词 步态分析 半监督学习 支持向量机 小波熵 老年人 gait analysis semi-supervised learning support vector machine wavelet entropy elderly people
  • 相关文献

参考文献17

  • 1中华人民共和国卫生部疾病预防控制局.老年人跌倒干预技术指南[EB/OL].http://www.moh.gov.cn,2011-09-06/2012-11-20.
  • 2Giannini S, Catani F, Benedetti MG, et al. Gait analysis:Methodologies and clinical applications [ M ] // Benedetti MG, eds. Terminology, Parameterization and Normalization in Gait Analysis. Amsterdam : IOS Press, 1994:65 - 88.
  • 3Brach JS, Perera S, Studenski S, et al. Meaningful change in measures of gait variability in older adults [ J ]. Gait and Posture, 2010, 31(2) : 175 - 179.
  • 4Nigg BM, Sklcryk BN. Gait characteristics of the elderly [ J ]. Clinical Biomechanics, 1988, 3 (2) :79 - 87.
  • 5Franqois P, Helene C, Rejean H. Gait in the elderly [ J]. Gait and Posture, 1997, 5 (2) : 128 - 135.
  • 6Chau T. A review of analytical techniques for gait data. Part 2 : Neural network and wavelet methods [ J ]. Gait and Posture, 2001, 13 : 102 - 120.
  • 7Wa Jianning, Wang Jue, Liu Li. Feature extraction via KPCA for classification of gait patterns [ J]. Human Movement Science, 2007, 26(3) :393 -411.
  • 8Begg RK, Palaniswaml M, Owen B. Support vector machines for automated gait classification [ J ]. IEEE Trans on Biomedical Engineering, 2005, 52(9) : 828 - 838.
  • 9Khandoker AH, Lai DT, Begg RK, et al. Wavelet-based feature extraction for support vector machines for screening balance impairments in the elderly [ J]. IEEE Trans on Neural Systems and Rehabilitation Engineering, 2007, 15 (4) :587 - 97.
  • 10Begg RK, Kamruzzaman J. A machine learning approach for automated recognition of movement patterns using basic, kinetic and kinematic gait data [ J ]. Journal of Biomechanics, 2005, 38 : 401 - 408.

二级参考文献36

  • 1杨帮华,颜国正,张永怀,付西光.脑机接口中一种改进的模式识别方法[J].中国生物医学工程学报,2006,25(2):234-237. 被引量:3
  • 2Sutherland DH. The evolution of clinical gait analysis part Ⅲ - kinetics and energy assessment [ J]. Gait & Posture, 2005, 21 (4) :447-461.
  • 3Sutherland DH. The evolution of clinical gait analysis: Part Ⅱ Kinematics[J]. Gait & Posture, 2002, 16(2) : 159-179.
  • 4Chau T. A review of analytical techniques for gait data. Part 1 : Fuzzy, statistical and fractal methods [ J ]. Gait and Posture, 2001, 13(1): 49-66.
  • 5Chau T. A review of analytical techniques for gait data. Part 2: Neural network and wavelet methods [ J ]. Gait and Posture. 2001.13(2) :102-120.
  • 6Olney SJ, Griffin MP, McBride ID. Multivariate examination of data from gait analysis of persons with stroke[ J]. Physical Therapy, 1998, 78(6) : 814-828.
  • 7Marghitu DB, Nalluri P. An analysis of greyhound gait using wavelets[ J]. Journal of Electromyograph and Kinesiology, 1997,7(3) :203-212.
  • 8Shannon CE. A mathematical theory of communication [ J ]. Bell Syst Techn Journal, 1948, 27:379-423.
  • 9Rosso OA,Blanco S, Yordanova J, et al. Wavelet entropy: a new tool for analysis of short duration brain electrical signals [J]. Journal of Neuroscience Methods, 2001, 105 (1) :65- 75.
  • 10Christopher L, Davis BL, Connor JC. Dynamic of Human Gait[ M ]. 2nd Edition. Kiboho Publishers, 1999:63-76.

共引文献49

同被引文献72

  • 1赵卓翔,王轶彤,田家堂,周泽学.社会网络中基于标签传播的社区发现新算法[J].计算机研究与发展,2011,48(S3):8-15. 被引量:37
  • 2杨义勇,王人成,郝智秀,金德闻,张涵.人体步态质量主元量化评定方法的研究[J].生物医学工程学杂志,2005,22(6):1100-1103. 被引量:1
  • 3朱晓兰,赵芳,周兴龙.老年人步态特征的分析及其评价系统的初步建立[J].北京体育大学学报,2006,29(2):201-203. 被引量:17
  • 4吴青,刘三阳,郑巍.基于乘性规则的支持向量机[J].智能系统学报,2007,2(2):74-77. 被引量:3
  • 5Bai Jing, Yang Lihong, Zhang Xueying. Parameter optimization and application of support vector machine based in parallel artificial fish swarm algorithm[J]. Journal of Software, 2013, 8(3): 673-679.
  • 6Strack R, Kecman V, Stack B,et al: Sphere Supportvector machine for large classification tasks[J]. Neu- rocomputing , 2013(101): 59-67.
  • 7Joachims T. Transductive inference for text classifica- tion using support vector machines[C]//International Conference on Machine Learning. California: Morgan Kaufmann, 1999 : 200-209.
  • 8Chapelle O, Zien A. Semi-supervised classification by low density separation[C]//Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics. Barbados: the Society for Artificial Intelli- gence and Statistics,2005: 57-64.
  • 9Bennett K, Demiriz A. Semi-supervised support vector machines[C]//Advances in Neural Information Pro- cessing Systems. MA Cambridge: MIT press, 1998: 368-374.
  • 10Zhang Ying, Zhang Liansheng, Xu Yingtao. New filled functions for nonsmooth global optimization[J]. Applied Mathematical Modelling, 2009, 33 ( 7 ) : 3114-3129.

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部