期刊文献+

法舒地尔对高糖诱导人肾小管上皮细胞转分化的影响 被引量:17

Effect of fasudil on epithelial-myofibroblast transdifferentiation of human renal tubular epithelial cells induced by high glucose
下载PDF
导出
摘要 目的探讨法舒地尔对高糖诱导的人肾小管上皮细胞(HK-2)转分化的影响及可能的作用机制。方法HK-2细胞分别加入葡萄糖5.5mmol·L^-1、葡萄糖5.5mmol·L^-1+甘露醇54.5mmol·L^-1、葡萄糖60mmol·L^-1(高糖)以及葡萄糖60mmol·L^-1+法舒地尔5,10和20ummol·L^-1。免疫共沉淀法检测葡萄糖60mmol·L^-1作用0—24h后磷酸化肌球蛋白磷酸酶目标亚单位1-苏氨酸696(p—MYPTl一Thr696)和P—MYPTl.Thr853的表达,以评估Rho相关的卷曲螺旋形成的蛋白激酶(ROCK)的活性;免疫细胞化学法检测a-平滑肌肌动蛋白(a-SMA)表达;Western蛋白质印迹法检测E-钙黏素、波形蛋白和结缔组织生长因子(CTGF)蛋白表达。结果与未加高糖刺激前比较,高糖培养3h后,细胞p—MYPTl-Thr696表达明显增加.积分吸光度(IA)值由1.08±0.09增加到2.4±0.09(P〈0.01);与未加高糖刺激前比较,高糖培养7h后,细胞P—MYPT1-Th旧53表达明显增加,IA值由0.57±0.01增加到1.45±0.14(P〈0.01),表明高糖能导致HK-2细胞ROCK分子活化。与正常对照组相比,葡萄糖60mmol·L。组HK-2细胞培养72h后E·钙黏素表达减少(P〈0.01),oc—SMA、波形蛋白和CTGF表达增多(P〈0.01);葡萄糖5.5mmol·L^-1+甘露醇54.5mmol·L一组与正常对照组比较无明显变化。与葡萄糖60mmol·L^-1组相比,葡萄糖60mmol·L^-1+法舒地尔5,10和20umol·L^-1组E-钙黏素表达增多(P〈0.01),a—SMA、波形蛋白和CTGF表达减少(P〈0.01),且法舒地尔20ummol·L^-1组改变更为明显,法舒地尔3个浓度组组间比较差异有显著性(P〈0.05)。结论法舒地尔能抑制高糖诱导的肾小管上皮细胞转分化,可能部分通过减少CTGF的表达而产生作用。 OBJECTIVE To investigate the effect of fasudil on the epithelial-myofibroblast transdif- ferentiation of human renal tubular epithelial (HK-2) cells induced by high glucose and to explore the mechanism. METHODS HK-2 cells were cultivated in glucose 5.5 mmol·L^-1, glucose 5.5 mmol·L^-1 + rnannitol 54.5 mmol·L^-1 , high glucose (60 rnrnol.L-1 ) and high glucose +fasudil 5, 10 and 20 umol·L^-1, respectively, for 72 h. Changes in the p-MYPT1-Thr696 and p-MYPT1-Thr853 were detected with co-immunoprecipitation assay, a-Smooth muscle actin (a-SMA), which reflected the phenotypic characteristics of rnyofibroblast cells, was detected by immunocytochemistry. Western blotting was used to detect the protein expression of E-cadherin, vimentin and connective tissue growth factor (CTGF). RESULTS Compared with HK-2 cells without glucose 6.0 mmol·L^-1 , the expression of p-MYPT1- Thr696 was enhanced after 3 h exposure to high glucose E integrated absorbance (IA) from 1.08±0.09 to 2.4 +0.09, P〈0.01 ), and that of p-MYPT1-Thr853 was enhanced after 7 h( IA from 0.57 ±0.01 to 1.45 ±0.14, P〈0.01 ), suggesting that the activity of Rho kinase could be activated by high glucose. Compared with glucose 5.5 mmol·L^-1 group, HK-2 cells cultured with glucose 60 mmol·L^-1 showed a decreased expression of E-cadherin ( P 〈 0.01 ), increased expression of a-SMA, vimentin and CTGF (P〈0.01). Compared with high glucose group, the high glucose + fasudil 5, 10 and 20 umol·L^-1 groups showed an increased expression of E-cadherin( P 〈0.01 ) , but decreased expression of a-SMA, vimentin and CTGF(P〈0.01 ). The changes of fasudil 20 umol·L^-1 group were the most obvious. CONCLUSION Fasudil can inhibit high glucose-induced epithelial-mnyofibroblast transdifferention of renal tubular epithelial cells, possibly by reducing the expression of CTGF.
出处 《中国药理学与毒理学杂志》 CAS CSCD 北大核心 2013年第5期808-813,共6页 Chinese Journal of Pharmacology and Toxicology
基金 温州市科技局基金资助(Y20100020)~~
关键词 法舒地尔 肾小管 上皮细胞 转分化 高糖 fasudil renal tubule epithelial cell transdifferentiation high glucose
  • 相关文献

参考文献19

  • 1Gilbert RE,Cooper ME.The tubulointerstitium in progressive diabetic kidney disease:more than an aftermath of glomerular injury?[J].Kidney Int,1999,56(5):1627-1637.
  • 2Nangaku M.Mechanisms of tubulointerstitial injury in the kidney:final common pathways to end-stage renal failure[J].Intern Med,2004,43(1):9-17.
  • 3Zeisberg M,Kalluri R.The role of epithelial-to-mesenchymal transition in renal fibrosis[J].J Mol Med (Berl),2004,82(3):175-181.
  • 4Masszi A,Di Ciano C,Sirokmány G,Arthur WT,Rotstein OD,Wang J,et al.Central role for Rho in TGF-beta1-induced alpha-smooth muscle actin expression during epithelial-mesenchymal transition[J].Am J Physiol Renal Physiol,2003,284(5):F911-F924.
  • 5Patel S,Takagi KI,Suzuki J,Imaizumi A,Kimura T,Mason RM,et al.RhoGTPase activation is a key step in renal epithelial mesenchymal transdifferentiation[J].J Am Soc Nephrol,2005,16(7):1977-1984.
  • 6Hayashi K,Wakino S,Kanda T,Homma K,Sugano N,Saruta T.Molecular mechanisms and therapeutic strategies of chronic renal injury:role of rho-kinase in the development of renal injury[J].J Pharmacol Sci,2006,100(1):29-33.
  • 7Tamura M,Nakao H,Yoshizaki H,Shiratsuchi M,Shigyo H,Yamada H,et al.Development of specific Rho-kinase inhibitors and their clinical application[J].Biochim Biophys Acta,2005,1754(1-2):245-252.
  • 8Gojo A,Utsunomiya K,Taniguchi K,Yokota T,Ishizawa S,Kanazawa Y,et al.The Rho-kinase inhibitor,fasudil,attenuates diabetic nephropathy in streptozotocin-induced diabetic rats[J].Eur J Pharmacol,2007,568(1-3):242-247.
  • 9Wu G,Tu Y,Jia R.The influence of fasudil on the epithelial-mesenchymal transdifferentiation of renal tubular epithelial cells from diabetic rats[J].Biomed Pharmacother,2010,64(2):124-129.
  • 10Komers R,Oyama TT,Beard DR,Tikellis C,Xu B,Lotspeich DF,et al.Rho kinase inhibition protects kidneys from diabetic nephropathy without reducing blood pressure[J].Kidney Int,2011,79(4):432-442.

二级参考文献15

  • 1邓先金,卿光兰,曾学丰,凌仲春.苯那普利与伊贝沙坦联用对2型糖尿病患者早期糖尿病肾病的影响[J].中华内科杂志,2005,40(1):52-54. 被引量:10
  • 2Massey AR, Miao L, Smith BN, et al. Increased RhoA translocation in renal cortex of diabetic rats. Life Sci, 2003,72: 2943 -2952.
  • 3Ishikawa Y, Nishikimi T, Akimoto K, et al. Long-term administration of rho-kinase inhibitor ameliorates renal damage in malignant hypertensive rats. Hypertension,2006,47:1075-1083.
  • 4Jo M, Thomas KS, Somlyo AV, et al. Cooperativity between the Ras-ERK and Rho-Rho kinase pathways in urokinase-type plasminogen activator-stimulated cell migration. J Biol Chem, 2002,277 : 12479-12485.
  • 5Danesh FR, Sadeghi MM, Amro N, et al. 3-Hydroxy-3- methylglutaryl CoA reductase inhibitors prevent high glucose- induced proliferation of mesangial cells via modulation of Rho GTPase/p21 signaling pathway : implications for diabetic nephropathy. Proc Natl Acad Sci U S A,2002,99:8301-8305.
  • 6Kawamura H, Yokote K, Asaumi S, et al. High glucose-induced upregulation of osteopontin is mediated via Rho/Rho kinase pathway in cultured rat aortic smooth muscle cells. Arterioscler Thromb Vasc Biol,2004,24:276-28l.
  • 7Zeng L, Xu H, Chew TL, et al. HMG CoA reductase inhibition modulates VEGF-induced endothelial cell hyperpermeability by preventing RhoA activation and myosin regulatory light chain phosphorylation. FASEB J,2005,19 : 1845-1847.
  • 8Roestenberg P, van Nieuwenhoven FA, Joles JA, et al. Temporal expression profile and distribution pattern indicate a role of connective tissue growth factor (CTGF/CCN-2) in diabetic nephropathy in mice. Am J Physiol Renal Physiol, 2006,290: F1344-1354.
  • 9Navarro JF, Mora C, G6mez M, et al. Influence of renal involvement on peripheral blood mononuclear cell expression behaviour of tumour necrosis factor-alpha and interleukin-6 in type 2 diabetic patients. Nephrol Dial Transplant,2008,23:919-926.
  • 10Mora C, NavalTo JF. The role of inflammation as a pathogenic factor in the development of renal disease in diabetes. Curr Diab Rep, 2005,5:399-401.

共引文献11

同被引文献66

引证文献17

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部