期刊文献+

非线性变换在计算接近奇异积分中的应用

The Application of Nonlinear Transform in Calculating Nearly Singular Integrals
下载PDF
导出
摘要 执行边界元方法的一个关键问题是接近奇异积分的快速精确计算.一般来说,经典的数值积分方法在执行边界元方法时是不能满足要求的.基于一类非线性变换,通过选择最优参数,提出了一种高效计算接近奇异积分的方法,数值试验证明这种算法是高效精确的. One of the key problems in implementing the boundary element method is the rapid and accurate calculation of nearly singular integral. Generally speaking, classic numerical integration methods cannot meet the requirement in implementing the boundary ele- ment method. In this paper, we choose optimal parameters and promote a method which can calculate nearly singular integral with high efficiency. The test shows that the algorithm is efficient and accurate.
作者 李宗学
出处 《长沙大学学报》 2013年第5期1-2,共2页 Journal of Changsha University
关键词 接近奇异积分 Gauss-Kronrod法则 边界元方法 非线性变换 nearly singular integral Gauss -Kronrod theorem the boundary element method nonlinear transform
  • 相关文献

参考文献8

  • 1Cruse T A, Aithal R. Non - singular boundary integTal equation im- plementation [ J ]. Int J Numer Methods Eng, 1993, (2) :237 - 254.
  • 2Banerjee P K, Wilson R B, Miller N. Development of a BEM large system for three -dimensional inelastic analysis[ A]. Proceedings ofASME Conference on Advanced Topics in Boundary Element Analy- sis AMD[ C]. ASME: New York, 1985.
  • 3Dallner R, Gunther K. Efficient evaluation of volume integrals in the boundary element method [ J]. Comput Methods Appl Mech Eng, 1993,(1 -2) :95 - 109.
  • 4Lachat J C, Watson J O. Effective numerical treatment of boundary integral equations: A formulation for three - dimensional elastostaties [J]. Int J Numer Methods Eng, 1976, (5) :991 - 1005.
  • 5Duffy M G. Quadrature over a pyramid or cube of integrands with a singularity at a vertex [ J ]. SIAM J Nurner Anal, 1982, (6) : 1260 - 1262.
  • 6Huang Q, Cruse T A. Some notes on singular integral techniques in boundary element analysis [ J]. Int J Numer Methods Eng, 1993, ( 15 ) :2643 - 2659.
  • 7Telles J C F. A self - adaptive coordinate transformation for efficient numerical evaluation of general boundary element integrals[ J]. Int J Numer Methods Eng, 1987, (5) :959 -973.
  • 8Wu S, Lu P. On the evaluation of nearly singular kernel integrals in boundary element analysis Some improved formulations [ J ]. Int J Numer Methods Eng, 1996, (2) :85 -93.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部