期刊文献+

二元混合五次函数方程的稳定性

The Hyers-Ulam-Rassias stability of a mixed quintic functional equation of two variables
原文传递
导出
摘要 设X和Y分别是实向量空间和实Banach空间,映射f:X2→Y称为二元混合五次函数是指任给x1,x2,y1,y2∈X都满足方程f(x1+x2,2y1+y2)+f(x1+x2,2y1-y2)+f(x1-x2,2y1+y2)+f(x1-x2,2y1-y2)=4f(x1,y1+y2)+4f(x2,y1+y2)+4f(x1,y1-y2)+4f(x2,y1-y2)+24f(x1,y1)+24f(x2,y1)。给出了二元混合五次方程的一般解,并证明了它的Hyers-Ulam-Rassias稳定性。 Let X be a vector space and Y be a Banach space over the real field, R. A mapping f: X2→Y from X2 into Y is called a mixed quintic functional equation of two variables if it satisfies that f(x1 +x E, 2yl + Y2 ) +f(xl + X2 ,2y1 -Y2 ) + f(x1 -X2, 2Yl +Y2) +f(x1-x2, 2y1 -y2) =4f(x1 ,y1 +y2) +4f(x2, y1 +y2) +4f(x1 ,y1 -y2) +4f(x2, y1 -y2) + 24f(x1, y1 ) +24f(x2, Yl ) for all x1 , x2, Yl, Y2 ∈X. The general solution of the mixed quintic functional equation of two variables is obtained and the Hyers-Ulam-Rassias stability for it is proved.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2013年第10期9-13,共5页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(10971117)
关键词 Hyers—Ulam—Rassias稳定性 二元混合五次函数方程 BANACH空间 Hyers-Ulam-Rassias stability the mixed quintic functional equation of two variables Banach space
  • 相关文献

参考文献11

  • 1ULAM S ML A collection of the mathematical problems[M].New York; Wiley,1960.
  • 2HYERS D H.On the stability of the linear functional equation[J].Proc Natl Acad Sci USA,1941,27:222-224.
  • 3AOKI T A.On the stability of the linear transformation in Banach spaces[J].J Math Soc Japan,1950,2:64-66.
  • 4RASSIAS Th M.On the stability of the linear mapping in Banach spaces[J].Proc Amer Math Soc,1978,72:297-300.
  • 5GAVRUTA P.A generalization of the Hyers-Ulam-Rassias stability of approximated additive mappings[J].J Math Anal Appl,1994,184:431-436.
  • 6SKOF F.Proprieta IocaIi approssimazione di operatori[J].Rend Sem Mat Fis Milano,1983,53:113-129.
  • 7ACZEL J,Dhombres J.Functional equations in several variables[M].Cambridge University Press,1989.
  • 8JUN K W,KIM H.The generalized Hyers-Ulam-Rassias stability of cubic functional equation[J].J Math Anal Appl,2002,274:867-878.
  • 9CHU H Y,KU S H,PARK J S.Partial stabilities and partial derivations of w-variable functions[J].Nonlinear Analysis,2010,72:1531-1541.
  • 10CIEPLINSKI K.Generalized stability of multi-additive mappings[J].AppI Math Letters,2010,23:1291-1294.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部