期刊文献+

非双倍测度下的Littlewood-Paley算子的有界性

Boundedness of Littlew ood-Paley operators with non-doubling measures
原文传递
导出
摘要 设μ是一个Rd上的Radon测度,仅满足增长条件:μ(B(x,r))≤C0rn,0<n≤d,x∈Rd,r>0。假设Littlew ood-Paley g函数在L2(μ)上有界,利用非双倍测度下的Calderón-Zygmund分解证明了Littlewood-Paley g函数是L1(μ)到L1,∞(μ)上有界的,并且它是H1(μ)到L1(μ)上有界的。 Let μ be a positive Radon measure on Rd which may be non-doubling. The only condition that μ must satisfy is μ ( B ( x, r) ) ≤ Co r, for x E Rd, r 〉 0 and some fixed constants Co 〉 0 and 0 〈 n ≤ d. Supposing Littlewood-Paley g is bounded on L2 (μ,) , by using the Calder6n-Zygmund decompsition under non-doubling measure, the boundedness of g from L1 (μ) to L1 ,∞ (μ) is obtaind. And then the boundedness of g from Hardy space H1 (μ) to L1 (μ) is established.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2013年第10期78-81,85,共5页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(11041004) 山东省自然科学基金资助项目(ZR2010AM032)
关键词 非双倍测度 LITTLEWOOD-PALEY算子 Calderón-Zygmund分解 有界性 non-doubling measure Littlewood-Paley operator Calder6n-Zygmund decompsition boundedness
  • 相关文献

参考文献8

  • 1TOLSA X. BMO, H^1 and Calderon-Zygmund operators for non doubling measures [ J]. Mathematische Annalen, 2001, 319 (1) :89-149.
  • 2TOLSA X.LittIewood-PaIey theory and the r(1)theorem with non doubling measures[J].Advances in Mathematics,2001,164(1):57-116.
  • 3GARCIA-CUERVA J,EDUARDO G A.Boundedness properties of fractional integral operators associated to non-doublingmeasures[J].Studia Mathematics,2004,162(3):245-261.
  • 4HU Guoen,MENG Yan,YANG Dachun.Multilinear commutators of singular integrals with non doubling measures[J].Inte-gral Equations and Operator Theory,2005? 51(2):235-255.
  • 5HU Guoen,LIN Haibo,YANG Dachun.Marcinkiewicz integrals with non doubling measures[J].Integral Equations and Op-erator Theory,2008,58(2):205-238.
  • 6XUE Qingying and ZHANG Juyang.Endpoint estimates for a class of Littlewood-PaIey operators with non doubling measures[J].Journal of Inequalities and Applications,2009.doi:10.11 55/2009/175230.
  • 7ALAREZ J,BAGBYB R J,KURTZ D S,et al.Weighted estimates for commutators of linear operators[J].Studia math-ematica,1993,104(2):195-209.
  • 8TOLSA X.A proof of the weak(1,1)inequality for singular integrals with non doubling measures based on a CaIderdn-Zyg-mund decomposition[J].Publicaion Mathematiques,2001,45(1):163-174.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部