摘要
设μ是一个Rd上的Radon测度,仅满足增长条件:μ(B(x,r))≤C0rn,0<n≤d,x∈Rd,r>0。假设Littlew ood-Paley g函数在L2(μ)上有界,利用非双倍测度下的Calderón-Zygmund分解证明了Littlewood-Paley g函数是L1(μ)到L1,∞(μ)上有界的,并且它是H1(μ)到L1(μ)上有界的。
Let μ be a positive Radon measure on Rd which may be non-doubling. The only condition that μ must satisfy is μ ( B ( x, r) ) ≤ Co r, for x E Rd, r 〉 0 and some fixed constants Co 〉 0 and 0 〈 n ≤ d. Supposing Littlewood-Paley g is bounded on L2 (μ,) , by using the Calder6n-Zygmund decompsition under non-doubling measure, the boundedness of g from L1 (μ) to L1 ,∞ (μ) is obtaind. And then the boundedness of g from Hardy space H1 (μ) to L1 (μ) is established.
出处
《山东大学学报(理学版)》
CAS
CSCD
北大核心
2013年第10期78-81,85,共5页
Journal of Shandong University(Natural Science)
基金
国家自然科学基金资助项目(11041004)
山东省自然科学基金资助项目(ZR2010AM032)