期刊文献+

结合统计和形状特征的高分辨率SAR影像道路网提取 被引量:3

Road Network Extraction of High Resolution SAR Image in Combination with Statistics and Shape Features
原文传递
导出
摘要 结合高分辨率SAR影像统计特性和道路形状特征,提出一种新的道路网提取方法。首先引入窗口均值改进二值分割,以降低SAR影像固有斑点的噪声影响,针对高分辨率影像中道路呈现为面特征并存在宽度变化的情况,引入VC系数自适应调整窗口大小,从而有效提取可能的道路区域;然后利用道路的形状特征约束,去除非道路区域;最后通过空洞填充、腐蚀和膨胀等数学形态学运算,以及骨骼化和去除多余分支等处理,提取道路网络。实验证实了本文方法的有效性。 A method of road network extraction for high resolution SAR images was proposed in combination with statistics from the image and shape features of a road in this paper. Firstly the window mean was introduced to improve binary segmentation to reduce the speck- le noise. Next, the variation coefficient (VC) was introduced to adaptively select the window size in order to resolve the problem that the road in high resolution images are always shown as a region and the width of the road usually changed. Then, these shape features of the road were used to remove the non-road regions. Finally, Mathematical morphology processing in- cluding hole filling, erosion and dilation, skeletonization, and branch trim were exploited to extract the road network. The experimental results show that the proposed method can ef- fectively extract road region of different width and provides excellent road net information, which validates the method described in the paper. Key words:
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2013年第11期1308-1312,共5页 Geomatics and Information Science of Wuhan University
基金 国家863计划资助项目(2011AA120404) 武汉大学研究生自主科研资助项目(201121302020006)
关键词 高分辨率SAR影像 道路网提取 VC系数 形状特征 high resolution SAR image road network extraction VC coefficient shape fea- tures
  • 相关文献

参考文献13

  • 1I.isini G. Tison G Tupin F. el al. Feature Fusion to Improve Road Network Extraction in High Reso- lution SAR lmages[J]. IEEE Trans. Geosci. Re- mote Sensing l.euer. 2006, 2(3) :217-221.
  • 2程江华,高贵,库锡树,孙即祥.SAR图像道路网提取方法综述[J].中国图象图形学报,2013,18(1):11-23. 被引量:20
  • 3Tupin F. Maitre H. Mangin J F. et al. Detection of I,inear Features in SAR Images: Application to Road Network Extraction[J]. 1EEE Trans. Geosci. Remote Sensing. 1998, 36(2): t3,l-,t53.
  • 4Kalartzis A, Sahli H, Pizurica V, et al. A Model Based Approach to the Automatic Extraction of I,in ear Features from Airborne Images [J]. IEEE Trans. Geosci. Remote Sensing, 2001 . 39 ( 9 ) : 2 073-2 079.
  • 5Poulain V, Inglada J. Spigai M. et al. High Reso lution ()ptical and SAR hnage Fusion for Road I)a- tabase Updating[C]. Geoscience and Remote Sens ing Symposium (IGARSS), Hawaii. 2010.
  • 6Cheng J. Guan Y, Ku X. et al. Semi-automatic Road Centerline Extraction in High-resolution SAR Images Based on ('ircular Template Matching[C]. Electric Information and Control Engineering (ICE- ICE), Wuhan, 2011.
  • 7Cao F, Hong W, Wu Y, et al. An Unsupervised Segmentation with an Adaptive Number of Clusters Using the SPAN/H/a/A Space and the Complex Wishart Clustering for Fully Polarimetric SAR Data Analysis[J]. IEEE Trans. Geosci. Remote Sens- ing, 2007, 11(45): 3 454-3 467.
  • 8卫蒙,常文革.数学形态法在超宽带SAR道路边缘检测中的应用[J].中国图象图形学报,2010,15(10):1555-1560. 被引量:4
  • 9Lee J S, Lurkevich I. Segmentation of SAR Images [J]. IEEE Trans. Geosci. Remote Sensing, 1989, 6(27) :674-680.
  • 10Lee J S, Pottier E. Polarimetric Radar Imaging.. From Basic to Applications[M]. London: Taylor Francis, 2009.

二级参考文献81

共引文献45

同被引文献16

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部