期刊文献+

基于平均线性粒子群算法的人工神经网络在径流预报中的应用 被引量:5

Application of Artificial Neutral Networks in Runoff Forecasting Based on Mean Linear Particle Swarm Optimization Method
下载PDF
导出
摘要 人工神经网络具有很强的非线性处理能力,能够有效地模拟复杂的非线性径流预报过程。传统的基于BP训练算法的人工神经网络具有训练时间较长,容易陷于局部最优值等缺陷,本文对训练算法加以改进,分别使用平均线性粒子群,粒子群和BP算法来优化人工神经网络的各项参数,首先使用标准函数测试了3种算法的全局优化性能,然后用它们对三峡水库的入库径流进行预报,以比较它们的预报性能。结果表明,在3种算法中,平均线性粒子群算法全局寻优的速度最快,稳定性最高,基于平均线性粒子群算法的人工神经网络的径流预报的精度也最高。 Artificial neural networks (ANNs) are effective tools in forecasting runoff in river because of their power capability in mapping in-output relations.However,the traditional ANNs based on back-propagation training algorithm need improvement because they have shortcomings in long training times and prone in falling into local optimum points.Therefore,3 algorithms were used to train the ANNs-mean linear particle swarm optimization (ML-PSO) method,original particle swarm optimization (PSO) method and BP method.Their global optimization capabilities were first tested by using the 3 standard mathematical functions,and the ANNs based on the 3 training algorithms were applied in runoff forecasting to test their performances.The results show that among the 3 algorithms,the ML-PSO algorithm is the fastest and most robust one in finding global optimum,and it also is the most accurate one in forecasting runoff.
出处 《水文》 CSCD 北大核心 2013年第5期10-15,共6页 Journal of China Hydrology
基金 国家自然科学基金项目(40701024)
关键词 径流预报 人工神经网络 平均线性粒子群算法 粒子群算法 BP算法 runoff forecasting artificial neural networks mean linear particle swarm optimization algorithm particle swarm optimization algorithm back-propagation algorithm
  • 相关文献

参考文献17

  • 1Hayking S. Neural Networks: A Comprehensive Foundation [M]. Prentice-Hall, 1999.
  • 2Funhashi K.I. On the approximate realization of continuous mappings by neural networks[J]. Neural Networks, 1989, 2(3): 183-192.
  • 3Homik K. Approximation capabilities of multilayer feedforward networks[J]. Neural Networks, 1991, 4(2): 251-257.
  • 4Angeline P. Evolutionary optimization versus particle optimization: Philosophy and performance differences [A]. Springer, 1998: 601-610.
  • 5艾尼瓦尔.努尔买买提.人工神经网络及其应用[J].和田师范专科学校学报,2009,29(1):246-247. 被引量:2
  • 6袁飞,任立良,姜红梅,季成康.MATLAB神经网络工具箱在径流模拟中的应用[J].人民长江,2003,34(6):38-40. 被引量:16
  • 7Kannan S., Slochanal S., Subbara J P., et al. Application of particle swarm optimization technique and its variants to generation expan- sion planning problem [J]. Electric Power Systems Research, 2004, 70(3): 203-210.
  • 8贾丽会,张修如.BP算法分析与改进[J].计算机技术与发展,2006,16(10):101-103. 被引量:47
  • 9Kennedy J., Eberhart R. Particle swarm optimization [A]. IEEE, 1995:1942-1948.
  • 10徐旭,姜飞.简述粒子群算法的原理及改进[J].计算机学报,2008,2(12).

二级参考文献26

共引文献150

同被引文献26

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部