期刊文献+

Map-Reduce应用于并行同步联合聚类学习的研究

Research on Map-Reduce Apply in Parallel Simultaneous Co-Cluster Learning
下载PDF
导出
摘要 许多数据挖掘应用中涉及的预测模型庞大并且数据集复杂。这样的应用程序急需创新的算法。该算法不仅需要有效的预测精度,而且需要有效的运行于分布式计算系统中并在合理的时间内产生结果。本文重点介绍多关系数据的预测模型,首先举例说明设计这些数据的应用模型,然后描述一个基于并行同步聚类(SCOAL)的总体框架,该框架适用于分而治之的方法进行数据分析。最终将论证基于并行同步聚类的框架在应用Map-Reduce的情况下可以有效的实现并行化。 Predictive models of many data mining applications involving large and complex data sets. Such applications need to be innovative algorithm not only can effectively forecast accuracy, and the need to effectively run and produce results within a reasonable period of time in a distributed computing system. This article focuses on the prediction of multi-relational data model. First of all, we give examples of the application model of the design of these data, and then describe an overall framework based on simultaneous co-cluster; the framework applies to the divide-and-conquer method for data analysis. The final argument in the case of the application of Map-Reduce parallel synchronous clustering-based framework can achieve parallelization.
作者 刘春茂 王超
出处 《科技通报》 北大核心 2013年第10期82-84,共3页 Bulletin of Science and Technology
关键词 分布式数据挖掘 Map—Redu(燃预测模型 distributed data mining map-reduce prediction model
  • 相关文献

参考文献5

  • 1D Agarwal, B Chen and P Elango. Spatio-temporal mod-els for estimating click -through rate. fC]//In WWW * 09,2009:21-30.
  • 2Cades I, Smyth P, Mannila H. Probabilistic modeling oftransactional data with applications to profiling, visualiza-tion and prediction, sigmod. [C]//In: Proc. of the 7th ACMSIGKDD. San Francisco: ACM Press, 2001:37-46.
  • 3朱楠.个性化推荐算法在网络教学中的应用[J].科技通报,2013,29(4):127-129. 被引量:5
  • 4Sun Y, Zhu QM, Chen ZX. An iterative initial-points re-finement algorithm for categorical data clustering[J]. Pat-tern Recognition Letters, 2002,23(7):875-884.
  • 5http://mapreduce.stanford.edu.

二级参考文献5

  • 1LANH.Wlqq:N,EIBEFRANK.数据挖掘实用机器学习技术及JAVA实现[M].北京:机械工业出版社,2003:77-118.
  • 2R Kosala,H Blockeel. Web mining research:a survey[C]//. In ACM SIGKDD Explorations,2000:82-86.
  • 3D Pyle. Data preparation for data mining [M]. Morgan Kaufmann:San Francisco,1999.
  • 4施建生,伍卫国,陆丽娜,Yang Yiling,杨怡玲.Web日志中挖掘用户浏览模式的研究[J].西安交通大学学报,2001,35(6):621-624. 被引量:34
  • 5戴稳胜,匡宏波,谢邦昌.数据挖掘中的关联规则[J].统计研究,2002,19(8):40-42. 被引量:21

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部