期刊文献+

正则化神经网络与提前终止迭代的比较分析 被引量:2

Comparative Analysis Between Regularized Neural Network Algorithm and the Early Stopping Iteration Algorithm
下载PDF
导出
摘要 神经网络算法是一种非常经典的分类算法,然而神经网络的一个不足之处就是容易陷入过拟合。针对这种不足,正则化神经网路算法与提前终止迭代算法被提了出来。为了进一步研究这两种算法性能的差异,本文通过20个UCI标准数据集上对着这两种方法进行了性能测试。实验显示在分类准确率上正则化神经网路算法要更优秀一些,但是在分类速度上提前终止迭代算法更占优势。 The neural network algorithm is a very classic classification algorithm. However, over-fitting is easy to arisen for neural network algorithm. For this shortfall, regularized neural network algorithm and early termination of the iterative method was proposed. In order to further study the differences of performance between these two algorithms, in this paper, we use 20 UCI standard data sets to test the performance of the two methods. The experiments show that the regularization neural network algorithm exhibits a superiority over the early stopping iteration algorithm at classification accuracy, but the early stopping iteration algorithm is much better at the classification speed.
作者 邵华
出处 《科技通报》 北大核心 2013年第10期112-114,共3页 Bulletin of Science and Technology
关键词 神经网络 分类算法 过拟合 正则化 neural network classification algorithm over-fitting regularized
  • 相关文献

参考文献7

  • 1Duda R 0, Hart P E, Stork D G. Pattern classification,Wiley, second edition, 2001.
  • 2许建华,张学工,李衍达.一种基于核函数的非线性感知器算法[J].计算机学报,2002,25(7):689-695. 被引量:23
  • 3Han J W, Kamber M著.范明译.Data Mining Concepts andTechniques(第二版)[M].北京:机械工业出版社,2001:257-259.
  • 4Quinlan, J.R, Induction of decision trees [JJ.Machinelearning. 1986,1(1): 81-106.
  • 5蔡勇智.一种改进的神经网络算法车牌识别算法研究[J].科技通报,2012,28(10):128-130. 被引量:25
  • 6Bishop C M. Pattern Recognition and Machine Learning[M]. Springer, 2006.
  • 7Tikhonov A T. Solution of ill -posed problems [M]. NewYork: Winston-wiley, 1977.

二级参考文献6

共引文献47

同被引文献24

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部