期刊文献+

网路通信中漂移数据抗干扰镇定模型分析 被引量:2

Network Communication Anti-Jamming Calm Drift Aata Model Analysis
下载PDF
导出
摘要 提出一种基于随机决策树以及自适应门限变换的漂移数据抗干扰镇定模型,把随机决策树融入Hoeffding Bounds不等式检测概念漂移数据并过滤其中的干扰因素,通过自适应门限的抗干扰阀值算法,实时跟踪并抑制相关的干扰因素处理,确保网络通信的顺利运行。实验结果说明,该模型的检测准确率、抗噪性、分类精度都优于传统模型,取得了令人满意的效果。 Based on a random drift data of the decision tree and adaptive threshold transform anti-interference calm model, the random decision tree into Hoeffding Bounds inequality detection concept drift data and filtering the interference factors, through the anti-jamming threshold algorithm of adaptive threshold, real-time tracking and suppress the interference factors related processing, ensure the smooth operation of the network communication. Experimental result shows that the detection accuracy of the model, the noise resistance, classification precision is superior to the traditional model, satisfactory results have been achieved.
作者 王敏 谢峰
出处 《科技通报》 北大核心 2013年第10期180-182,共3页 Bulletin of Science and Technology
基金 产学研一体化IT服务人才培养基地的建设研究与实践项目(JG201261)
关键词 网络通信 漂移数据 抗干扰镇定模型 不等式 自适应门限 network communication the drift data anti-interference calm model inequality the adaptive threshold
  • 相关文献

参考文献5

二级参考文献55

  • 1陈冰.固定网络数字微波传输解决方案及应用[J].通信世界,2006(40B):20-20. 被引量:2
  • 2Zhu Xiaodong, Huang Zhiqiu,Zhang Junhua,et al.Granular computing based intrusion detection model upon network monitor data streams[C]//2nd International Conference on Pervasive Computing and Applications.Oakland, USA: IEEE Press, 2007:414-418.
  • 3Lee W.Using genetic algorithm for network intrusion detection[C]// United States Department of Energy Cyber Security Group Training Conference.Cambridge, MA: MIT Pres, 2004:12-20.
  • 4Faraoun K M,Boukelif A.Neural networks learning improvement using the K-Means clusetring algorithm to detect network intrusions[J].Intemational Journal of Computational Intelligence.New York, USA: Springer-Verlag, 2006,3 : 161 - 168.
  • 5Lee S C,Heinbuch D V.Training a neural-network based intrusion detector to recognize novel attacks[J].IEEE Transactions on Systems, Man and Cybernetics, 2001,31 (4) : 294-299.
  • 6Oh Sang-hyun,Kang Jin-suk,Byun Yung-cheol,et al.Intrusion detection based on clustering a data stream[C]//3rd ACIS Int'l Conference on Software Engineering Research,2005 : 29-43.
  • 7Gao Jing,Fan Wei,Han Jiawei.General framework for mining concept-drifting data streams with Skewed distributions[C]//7th SIAM International Conference on Data Mining,2007:120-126.
  • 8Wang Yi,Zhang Yang.Mining data streams with Skewed distribution by static classifier ensemble[M]//Opportunities for Next-Generation Applied Intelligence,2009,214:65-71.
  • 9Chu N C N,Williams A,Alhajj R,et al.Data stream mining architecture for network intrusion detection[C]//The IEEE International Conference on Information Reuse and Integration, 2004:142-150.
  • 10Gao V,Fan W,Han J.A general framework for mining conceptdrifting data streams with Skewed distributions[C]//2007 SIAM Int Conf Data Mining,Minneapolis, USA, 2007.

共引文献40

同被引文献12

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部