期刊文献+

基于物联网模糊评估的大型交通车辆调度模型研究 被引量:10

Fuzzy Evaluation Large Transportation Vehicle Scheduling Model Study Based on Internet of Things
下载PDF
导出
摘要 目前的交通车辆调度系统中,依靠大量的经验策略对交通远程图像观察后制定规则,存在数据采集混乱,调度主观性强,调度效率低下的问题。将物联网的思想引入到大型交通车辆调度中,首先,使用物联网中的RIFD技术改造信息采集模块,配合GPS技术对大型交通车辆实现自动远距离、实时的数据采集,保证调度策略中的数据来源的充足与准确;在软件设计中,引入一种模糊函数制定车辆调度优化的评估模型,再使用粒子群优化算法对调度策略求解,解决了传统交通调度非线性强,无精确模型评定的缺陷。实验表明,本文的交通车辆调度方法较传统的车辆调度效率提高15%,具有很强的实用价值。 The present transportation vehicle scheduling rely on artificial observation after making to traffic remote images, because the data acquisition, scheduling subjectivity is strong, a scheduling inefficiencies. In this paper, a largescale transportation vehicle scheduling system based on Internet of things technology design. RIFD in the first, the use of the Internet of things technology combined with GPS technology for large transport vehicles to realize automatic remote, real-time data collection, to ensure adequate and accurate data sources in the scheduling policy; Again, introducing a fuzzy function is a scheduling optimization evaluation model, using particle swarm optimization algorithm for scheduling policies, solve the traditional traffic scheduling strong nonlinear, without precise model of evaluation of defects. Experiments show that the transportation vehicle scheduling method than the traditional vehicles dispatching efficiency increased by 15%, has a strong practical value.
作者 许晓玲
出处 《科技通报》 北大核心 2013年第10期189-191,共3页 Bulletin of Science and Technology
关键词 交通车辆调度 RIFD 模糊函数 粒子群优化 transportation vehicle scheduling RIFD fuzzy function particle swarm optimization
  • 相关文献

参考文献4

二级参考文献28

共引文献55

同被引文献34

  • 1张晨,张宁.上海市公交网络拓扑性质研究[J].上海理工大学学报,2006,28(5):489-494. 被引量:33
  • 2王方伟,张运凯,丁振国,马建峰.无线自组网的拓扑控制策略研究进展[J].计算机科学,2007,34(10):70-73. 被引量:13
  • 3Leontiadis I,Marfia G,Mack D,et al.On the effectiveness of an opportunistic traffic management system for vehicular networks[J].IEEE Transactions on Intelligent Transportation Systems,2011,12(4):1537-1548.
  • 4Bauza R,Gozalvez J,Sanchez-Soriano J.Road traffic congestion detection through cooperative Vehicle-to-Vehicle communications[J].Int Conf Local Computer Networks(LCN),Denver,CO,2010:606-612.
  • 5Xia Y,Zhang X,Wang G Y.Cluster-based congestion outlier detection method on trajectory data[C]//Int.Conf.Fuzzy Systems and Knowledge Discovery,Tianjin,2009:243-247.
  • 6Zhang E Z,Jiang W L,Kuang Y J,et al.Active RFID positioning of vehicles in road traffic[C]//Int Conf Communications and Information Technologies(ISCIT),Hangzhou,2011:222-227.
  • 7C C Chi, B Juurlink and C Meenderinck. Evaluation of parallel H 264 decoding strategies for the cell broadband engine [ C ]. Int Conf. on supercomputing, 2010.
  • 8Miorandi D,Sicari S,Pellegrini F D,et al.Internet of things:vision,applications and research challenges[J].Ad Hoc Networks,2012,10(7):1497-1516.
  • 9惠伟,王红.复杂网络在城市公交网络中的实证分析[J].计算机技术与发展,2008,18(11):217-219. 被引量:22
  • 10叶英,穆千祥,张成平.隧道施工多元信息预警与安全管理系统研究[J].岩石力学与工程学报,2009,28(5):900-907. 被引量:44

引证文献10

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部