期刊文献+

倒向微分方程在一类奇异最优控制中的应用

Solution to Singular Optimal Control by Canonical Backward Differential Equation
下载PDF
导出
摘要 利用Krotov方法把一类奇异最优控制问题转化为一族球约束的全局优化问题,然后引入一族初值连续依赖于时间参量的倒向微分方程,给出相应的全局优化问题的解析解,用以构造最优控制的解析表达式. A singular optimal control problem is solved by Krotov Extension method and Canonical backward differential flows. By using Krotov equivalent transformation, the cost functional of the problem is converted to a class of global optimization problems which are solved by a class of backward differential equations with initial values relying on the time point continuously.
出处 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第11期1751-1754,共4页 Journal of Tongji University:Natural Science
关键词 奇异最优控制 全局优化 倒向微分流 singular optimal control global optimization backward differential flow
  • 相关文献

参考文献8

  • 1Pontryagin L S.The mathematical theory of optimal processes[M].Oxford:Pergamon Press,1964.
  • 2Sontag E D.Mathematical control theory:deterministic finite dimensional systems[M].2nd ed.New York:Springer,1998.
  • 3Krotov V F.Global methods in optimal control theory[M].New York:Marcel Dekker,1996.
  • 4ZHU Jinghao,WU Dan,Gao D Y.Applying the canonical dual theory to optimal control problems[J].Global Optimization,2012,54(2):221.
  • 5Lasserre J B.Global optimization with polynomials and the problem of moments[J].Global Optimization,2001:11 (3):796.
  • 6ZHU Jinghao,ZHANG Xi.On global optimmizations with polynomials[J].Optimization Letters,2008,2 (2):239.
  • 7Gao D. Canonical duality theory and solutions to constrained non-convex quadratic programming [J]. Global Optimization, 2004,29(4) :377.
  • 8Brown R F.Fixed point theory and its applications[M].[S.l.]:American Mathematical Society,1988.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部