期刊文献+

基于像素修补的残缺标签识别技术在物流仓储中的应用

Application of Damaged Label Identification Technology Based on Pixel Repair in Logistics Warehousing
下载PDF
导出
摘要 利用传统算法进行物流标签识别,通常情况下都是针对完整的标签图像进行操作的,假设标签图像出现损毁导致标签图像不完整,则无法对该标签进行准确的识别。针对上述传统算法的弊端,提出了一种基于像素修补的残缺物流标签识别方法。对标签的轮廓进行有效的分析,通过运算获取标签曲线的非线性变换规则,利用离散变换方法,能够实现残缺标签的修补,从而进行残缺标签的识别。实验结果表明,利用该算法进行残缺标签的识别,能够提高标签识别的准确性,加强物流仓储的安全性,取得了令人满意的效果。 In this paper, we proposed a damaged label identification technology based on pixel repair: first analyzing effectively the outline of a damaged label, obtaining the nonlinear conversion rule of the curve of the label through calculation and then using the discrete conversion method to repair the label and completing the identification. Then through an experiment, we showed that the method could yield satisfying result.
作者 任燕
出处 《物流技术》 北大核心 2013年第9期432-434,共3页 Logistics Technology
基金 国家自然科学基金(68974521)
关键词 残缺标签 物流仓储 像素修补 damaged label logistics warehousing pixel repair
  • 相关文献

参考文献5

二级参考文献18

  • 1陈虎,周朝辉,王守尊.基于数学形态学的图像去噪方法研究[J].工程图学学报,2004,25(2):116-119. 被引量:54
  • 2蒋立辉,耿蒙,赵春晖.基于广义形态滤波和模糊逻辑的散斑噪声抑制[J].红外与激光工程,2005,34(1):80-83. 被引量:5
  • 3GonzalezRafaelC WoodsRichardE.数字图像处理(第二版)[M].北京:电子工业出版社,2003..
  • 4Feng-Sheng Chen,Chih-Ming Fu,Chung-Lin Huang.Hand Gesture Recognition Using a Real-time Tracking Method and Hidden Markov Models[J].Image and Vision Computing 2003,21:745-758.
  • 5MilanSonka VaclavHlavac RogerBoyle.Image Processing Analysis and Machine Vision[M].人民邮电出版社,2003..
  • 6Crespo J, Maojo V. New Results on the Theory of Morphological Filters by Reconstruction [J]. Pattern Recognition, 1998, 31(4): 419-429.
  • 7ZHENG Ming-jie, LIU Xian-feng, YANG Ru-liang. Speckle Reduction for SAR Images Based on Soft-morphological Filter with Omni-directional Multiple Structuring Elements[C]//CIE International Conference of Radar Proceedings. Beijing: Chinese Institute of Electronics (CIE), 2001:928-932.
  • 8Dewaele P, Wambacq P, Oosterlinck A, et al. Comparison of Some Speckle Reduction Techniques for SAR Images[C]// IGRASS'90. Maryland: the University of Maryland College Park, 1990: 2417-2422.
  • 9David G Lowe. Distinctive image features from scale-in- variant keypoints [J]. International Journal of Computer Vision, 2004,60( 2 ) : 91 - 110.
  • 10David G Ix)we. Object recognition from local seale-invari- ant features. [C]//ICCV, 1998:1150-1157.

共引文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部