期刊文献+

天然气水合物注热水分解径向数学模型 被引量:10

Radial Mathematical Model for Hot Water Dissociation Frontal Brim of Natural Gas Hydrates
下载PDF
导出
摘要 在一半无限大区域水合物分解过程描述基础上,建立了Stefan移动边界径向拟稳定传热数学模型,利用Paterson指数积分函数求解了分解带和水合物带的温度精确解,结合Deaton方法和Clausius-Clapeyron分解热方程确定水合物分解前缘位置。对一给定物性参数的稳定水合物储层例子进行计算,得出了水合物径向分解规律:随着径向距离增加温度急剧下降到分解温度8.416℃,再降到储层温度5.33℃,分解前缘位置变化趋势变缓;随着时间增加温度从5.33℃缓慢上升到8.416℃后急剧上升,时间足够长接近注入热水温度100℃;随着时间增加径向半径增加趋势减缓,分解时间到150 d时80~100℃温度变化为27.3℃,100~150℃温度变化为49.3℃。 Based on the description of dissociation process of natural gas hydrate in a semi-infinite zone, a radial pseudo-stationary mathematical model of heat transfer was built with Stefan moving boundary, and accurate solution of temperature applied in dissociation zone and natural gas hydrate zone was calculated by using Paterson method of exponential integral function. In addition, the location of dissociation frontal brim of natural gas hydrate was determined by combining Deaton method with Clausius-Clapeyron equation for decomposition heat. Radial dissociation laws of natural gas hydrate were obtained through an example of a steady hydrate reservoir whose physical parameters are known: with the increasing of radial range, temperature of hydrate reservoir drops abruptly to 8.416℃ (dissociation temperature) and further to 5.33℃ (reservoir temperature), and the location of dissociation frontal brim changes slowly; besides, with the increase of time, the temperature rises sharply after increasing slowly from 5.33 ℃ to 8.416℃, and after adequate days will reach 100℃ (the injected hot water temperature); furthermore, radius of hydrate dissociation grows slowly, and after 150 days supposed dissociation temperature changes 27.3℃ for 80-100℃ and 49.3℃ for 100-150℃.
出处 《高校化学工程学报》 EI CAS CSCD 北大核心 2013年第5期761-766,共6页 Journal of Chemical Engineering of Chinese Universities
基金 中国科学院知识创新方向性资助项目(KGCX2-SW-309)
关键词 天然气水合物 Stefan移动边界 径向数学模型 分解前缘 natural gas hydrate Stefan moving boundary radial mathematical model dissociation frontal brim
  • 相关文献

参考文献16

  • 1王金宝,郭绪强,陈光进,李遵照,杨兰英.二氧化碳置换法开发天然气水合物的实验研究[J].高校化学工程学报,2007,21(4):715-719. 被引量:26
  • 2方银霞,金翔龙,黎明碧.天然气水合物的勘探与开发技术[J].中国海洋平台,2002,17(2):11-15. 被引量:36
  • 3McGuire P L. Methane hydrate gas production by thermal stimulation [C]. paper presented at the Fourth Canadian Permafrost Conference, Calgary Alberta, Canada: 1981.3: 2-6.
  • 4Holder G D, Angert P F. Stimulation of gas production from a reservoir containing both gas hydrate and free natural gas [C]. SPEPaper 11105 presented at the 57th SPE Annual Technical Conference in New Orleans, LA: 1982:26-29.
  • 5LIMing.chuan(李明川).多孔介质中天然气水合物注热水分解理论及实验研究【D].成都:西南石油大学,2005.
  • 6Holder E D, Angert P F, John V T A Thermodynamic evaluation of thermal recovery of gas hydrates in earth [J]. Journal of Petroleum Technology, 1982, 37(1): 1127-1132.
  • 7Selim M S, Dsloan E. Hydrate dissociation in sediment [C]. SPE paper 16859 presented at the 62th SPE annual Technical Conference in Dallas, Tx, 1987: 27-30.
  • 8Kamath V A,Holder G D ,Angert P F. Three phase interracial heat transfer during the dissociation of propane hydrates [J]. Chem Eng Sei, 1984, 39(10): 1435-1442.
  • 9Tsinpanogiannis I N, Lichtner P C. Parametric study of methane hydrate dissociation in oceanic sediments driven by thermal stimulation [J]. Journal of Petroleum Science and Engineering, 2007, 56(3): 165-175.
  • 10Ullerich J W, Selim M S, Sloan E D. Theory and measurements of hydrate dissociation [J]. AIChE Journal, 1987, 33(5): 747-752.

二级参考文献36

  • 1唐良广,李刚,冯自平,樊栓狮.热力法开采天然气水合物的数学模拟[J].天然气工业,2006,26(10):105-107. 被引量:15
  • 2Lee S Y, Holder, G D. Methane Hydrates Potential as a Future Energy Source. Fuel Processing Technology, 2001,71:181-186
  • 3Holder G D, Angert P F, John V T. A Thermodynamic Evaluation of Thermal Recovery of Gas from Hydrates in Earth. Journal of Petroleum Technology, 1982, 37(1):1127-1132
  • 4Selim M S,Sloan E D. Modeling of the Dissociation of an In-Situ Hydrate. SPE 13597,In: California Regional Meeting, Sakerafii,California,1985
  • 5Selim M S, Sloan E D. Hydrate Dissociation in Sediment.SPE Reservoir Engineering,1990. 245-251
  • 6Makogon Y F. Hydrates of Natural Gas. Penn Well Publishing Company,Tulsa, Oklahoma, 1997
  • 7Howell D G (豪厄尔)编.Translated by YANG Deng-wei(杨登维),LI Da-gen(李大艮)译.The Future of Energy Gases(能源气的未来)[M].Beijing(北京):Petroleum industry press(石油工业出版社),1999.300-373.
  • 8Ota M,Abe Y,Watanabe M et al.Methane recovery from methane hydrate using pressurized CO2.Fluid Phase Equilibria,2005,228-229:553-559.
  • 9Ota M,Morohashi K,Abe Y et al.Replacement of CH4 in the hydrate by use of liquid CO2[J].Energy Conversion and Management,2005,46 (11-12):1680-1691.
  • 10Uchida T,Takeya S,Ebinuma T.Replacing methane with CO2 in clathrate hydrate:observation using Raman spectroscopy[A].The 5th International Conference on Greenhouse Gas Control Technology[C].Collingword:2001,523-527.

共引文献71

同被引文献94

引证文献10

二级引证文献101

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部