期刊文献+

复合材料特征值的高阶多尺度Rayleigh商校正

HIGHER-ORDER MULTISCALE RAYLEIGH QUOTIENT CORRECTIONS TO THE EIGENVALUES OF COMPOSITE MATERIALS
原文传递
导出
摘要 本文讨论了周期结构复合材料特征值的多尺度计算,提出了高阶多尺度Rayleigh商校正算法,并给出了收敛性分析.最后,通过大量数值实验结果表明,新算法是有效且必要的. In this paper, we discuss the multiscale computation for the eigenvalue problem in composite materials with a periodic microstructure. We present the higher-order multiscale Rayleigh quotient correction method and derive the convergence result. Finally, the numerical experiments show that the method presented in this paper is effective and essential.
作者 张磊 曹礼群
出处 《计算数学》 CSCD 北大核心 2013年第4期431-448,共18页 Mathematica Numerica Sinica
基金 国家自然科学基金(60971121 90916027) 国家重点基础研究发展计划(2010CB832702)项目资助
关键词 复合材料 特征值 高阶多尺度校正 RAYLEIGH商 Eigenvalue problem the higher-order multiscale correction Rayleigh quotient composite materials
  • 相关文献

参考文献15

  • 1Babuska I and Osborn J E. Eigenvalue problem, Handbook of Numerical Analysis, Vol.II, North- Holland, Amsterdam, 1991.
  • 2Bensoussan A, Lions J L and Papanicolaou G. Asymptotic Analysis of Periodic Structures. North- Holland, Amsterdam, 1978.
  • 3Cao L Q, Cui J Z and Zhu D C. Multiscale asymptotic analysis and numerical simulation for the second order Helmholtz equation with oscillating coefficients over general convex domains[J]. SIAM J. Numer. Anal., 2002, 40: 543-577.
  • 4Cao L Q and Cui J Z. Asymptotic expansions and numerical algorithms of eigenvalues and eigen- functions of the Dirichlet problem for second order elliptic equations in perforated domains[J]. Numer. Math., 2004, 96: 525-581.
  • 5Cao L Q and Luo J Z. Multiscale Numerical Algorithm for the Elliptic Eigenvalue Problem with the Mixed Boundary in Perforated Domains[J]. Appl. Numer. Math., 2008, 58: 1349-1374.
  • 6Cao L Q, Zhang L, Allegretto W and Lin Y P. Multiscale computation of a Steklov eigenvalue problem with rapidly oscillating coefficicents[J]. Intern. J. Numer. Anal. & Model., 2013, 10(1): 42-73.
  • 7Cao L Q, Zhang L, Allegretto W and Lin Y P. Multiscale asymptotic method for steklov eigenvalue equations in composite media[J]. SIAM J. Numer. Anal., 2013, 51: 273-296.
  • 8Cioranescu D and Donato P. An Introduction to Homogenization. Oxford University Press, 1999.
  • 9Golub G H and Van Loan C F. Matrix Computations. London: John Hopkins, 1996.
  • 10Jikov V V, Kozlov S M and Oleinik O A. Homogenization of Differential Operators and Integral Fhnctionals. Springer-Verlag, Berlin, 1994.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部