期刊文献+

外源功能基因在木质纤维素依赖型乳酸菌Pediococcus acidilactici DQ2中的表达 被引量:1

Expression of Functional Genes in Lignocellulose-dependent Lactic Acid Bacterium Pediococcus acidilactici DQ2
原文传递
导出
摘要 乳酸片球菌Pediococcus acidilactici DQ2是一株耐高温和耐木质纤维素降解抑制物的乳酸高产菌株.为了在P.acidilactici DQ2中建立外源蛋白表达系统,对常用的乳酸菌表达载体pMG36e进行改造,将其启动子P32更换为来源于P.acidilactici DQ2的L-乳酸脱氢酶基因的启动子PldhL.并通过新载体pTY36e成功表达了两种不同的外源基因:来源于维多利亚多管发光水母(Aequorea victoria)的绿色荧光蛋白基因gfp和来源于多粘芽孢杆菌(Bacillus polymyxa 1.794)的β-葡萄糖苷酶基因bglA,其中所表达的胞内β-葡萄糖苷酶活力为4.48 U g-1(细胞干重).此系统的成功构建为后续对该菌的基因工程改造奠定了基础. Pediococcus acidilactici DQ2, isolated by our lab, is thermotolerant and highly resistant to the inhibitors derived from lignocellulose, and can produce high titer of lactic acid. To construct the expression system of this strain, we modified the lactic acid bacterial expression vector pMG36e by replacing the promoter P32 with PldhL derived from P. acidilactici DQ2. Two different heterologous genes were expressed successfully with the new plasmid pTY36e: green fluorescent protein gene (gfp) from Aequorea victoria and β-glucosidase gene (bglA) from Bacillus polymyxa 1.794. The results showed β-glucosidase enzyme activity of the recombinant bacteria as 4.48 U g-1 (dry cells) detected in the intracellular fraction. The successful construction of this system lays the foundation for subsequent genetically engineering of P. acidilactici DQ2. Fig 4, Tab 3, Ref 25
出处 《应用与环境生物学报》 CAS CSCD 北大核心 2013年第5期811-816,共6页 Chinese Journal of Applied and Environmental Biology
基金 "973"计划项目(2011CB707406) "863"计划项目(2012AA022301) 中国博士后基金(2011M500742 2012T50380 2012M520850) 中央高校基本科研业务费专项资金(WF0913005 1114054 1214025) 上海市重点学科建设项目(B505)资助~~
关键词 木质纤维素 PEDIOCOCCUS acidilactici DQ2 表达系统 启动子 重组表达 lignocellulose Pediococcus acidilactici DQ2 expression system promoter recombinant expression
  • 相关文献

参考文献3

二级参考文献61

  • 1沈煜,郑华军,王颖,鲍晓明,曲音波,白凤武.木酮糖激酶表达水平对酿酒酵母木糖代谢产物流向的影响[J].生物化学与生物物理进展,2004,31(8):746-751. 被引量:11
  • 2侯进,沈煜,鲍晓明.木糖异构酶在酿酒酵母表面表达及对木糖代谢影响的初步研究[J].生物加工过程,2006,4(1):30-34. 被引量:7
  • 3袁振宏,潘亚平,刘继开,颜涌捷,杨秀山.代谢木糖和葡萄糖的重组酿酒酵母的构建[J].微生物学通报,2006,33(3):104-108. 被引量:4
  • 4ChenHZ(陈洪章)ed in chief.秸秆资源生态高质化理论与应用.北京:化学工业出版社,2006.
  • 5Jeffries TW. Utilization of xylose by bacteria, yeasts, and fungi. Adv Biochem Eng Biotechnol, 1983, 27:1-32.
  • 6Kotter P, Amore R, Hollenberg CP, Ciriacy M. Isolation and characterization of the Pichia stipitis xylitol dehydrogenase gene, XYL2, and construction of a xylose-utilizing Saccharomyces cerevisiae transformant. Curr Genet, 1990, 18:493-500.
  • 7Ho NW, Chen Z, Brainard AP. Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose, dppl Environ Microbiol, 1998, 64:1852-1859.
  • 8Eliasson A, Christensson C, Wahlbom CF, Hahn-Hagerdal B. Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures. Appl Environ Microbiol, 2000, 66:3381-3386.
  • 9Jeppsson M, Johansson B, Hahn-Hagerdal B, Gorwa-Grauslund MF. Reduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizing Saecharomyces cerevisiae strains improves the ethanol yield from xylose. Appl Environ Microbiol, 2002, 68:1604-1609.
  • 10Verho R, Londesborough J, Penttila M, Richard P. Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae. Appl Environ Microbiol, 2003, 69:5892-5897.

共引文献53

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部