期刊文献+

改进的基因表达式编程算法在演化建模中的应用

Application of improved gene expression programming for evolutionary modeling
下载PDF
导出
摘要 为了克服传统基因表达式编程易早熟收敛、种群多样性难以保持、演化效率不高、拟合度不高等缺陷,给出了基于表现型的种群多样性测度,并提出了基于排挤小生境的改进基因表达式编程算法.该算法将小生境半径内的早熟个体通过罚函数排挤出去,使其它优良个体得以更大概率进化,并使各个个体之间保持一定的距离.分别对一元函数和多元复杂函数进行演化建模实验.结果表明,改进的算法能在演化过程中能保持丰富的群体多样性,能够有效避免过早收敛,具有更高的成功率、更高的收敛速度和拟合精度. Improved gene expression programming based on crowding niche is proposed to overcome the shortcoming of the traditional gene expression programming, which is easy to premature convergence, is difficult to maintain the diversity of the population, and has low evolution efficiency and fitting accuracy. The algorithm crowd out premature individuals within niche radius through the penalty function, so that other superior individuals evolve with high probability, and each individual keep a certain distance. Through evolution modeling experiment of unary function and complex multivariate function results show that the improved algorithm can preserve population diversity, effectively avoids premature convergence, has higher success rate, faster convergence speed and higher fitting precision.
作者 涂燕琼 王曦
出处 《江西理工大学学报》 CAS 2013年第5期77-81,共5页 Journal of Jiangxi University of Science and Technology
基金 国家自然科学基金资助项目(61105042) 江西省教育厅科学技术研究项目(GJJ13410 GJJ13412) 江西理工大学科研基金项目计划(jxxj11057)
关键词 基因表达式编程 小生境 多样性 早熟收敛 演化建模 gene expression programming niche diversity premature convergence evolutionary modeling
  • 相关文献

参考文献15

二级参考文献86

共引文献201

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部