摘要
文中探讨了矩阵函数值的计算问题.证明了:若f(z)是复平面C上的整函数,A={a ij}∈Cn×n,‖A‖为相容矩阵范数,L是一半径充分大的圆周(半径r≥‖A‖),(ξI-A)-1={bij(ξ)},则有f(A)={1/(2πi)∫ L乙f(ξ)bij(ξ)dξ}.依据该结论,文中给出了利用留数来计算矩阵函数值的新方法.
This paper discusses the calculation problem of matrix function value. It is proved that iff (z) is an entire function on the complex plane C, A={aij}∈Cnxn||A|| is the compatible norm, L is a circle for which the radius is large enough(rr≥||A||),(ζI-A)^-1={bij(ζ)},than f(A)={1/2πi∫Lf(ξ)by(ξ)dξ} holds. According to this formula, it presents a new cheaper method to calculate matrix function value by using residue theorem
出处
《江西理工大学学报》
CAS
2013年第5期96-99,共4页
Journal of Jiangxi University of Science and Technology
基金
国家自然科学基金资助项目(11201217)
关键词
矩阵函数
整函数
留数
柯西积分公式
matrix function
entire function
residue
Cauchy formula