期刊文献+

含死区和饱和的非线性系统PID控制器设计 被引量:6

Design of PID Controller for Nonlinear System with Dead-zone and Saturation
下载PDF
导出
摘要 基于死区饱和的描述函数模型以及线性系统PID控制器参数稳定域确定的方法,提出一种含有死区饱和的非线性系统PID控制器设计方法。针对非线性环节的不同正弦输入幅值,给出一种新的等效逆Nyquist曲线。可从不同的正弦输入幅值时PID参数稳定域的交集中选取PID控制器参数。该控制器可以有效地减轻非线性的影响。对于开环不稳定的对象,加入一个参考输入预过滤器。所建议的方法,可以使含死区饱和环节的闭环系统稳定。仿真实例表明,该方法有效。 Based on the describing function model of dead-zone and saturation and the method of determi- ning the stabilizing region of PID controller for linear system, an approach is presented for the design of PID controller for a given nonlinear system with dead-zone and saturation. The new equivalent inverse Nyquist plots are given for the different sinusoidal input amplitudes of nonlinear component, and the pa- rameters of PID controller are selected from the intersection sets of stabilizing controller parameter region for different sinusoidal input amplitudes. The controller can effectively mitigate the nonlinear effect. For unstable open-loop system, a prefilter is added on the reference input. The proposed approach can be used to stabilize the closed-loop system with nonlinearity. The simulation examples demonstrate the valid- ity of the proposed approach.
作者 彭富明 方斌
出处 《兵工学报》 EI CAS CSCD 北大核心 2013年第10期1298-1303,共6页 Acta Armamentarii
关键词 自动控制技术 死区饱和 逆Nyquist PID控制器 参数稳定域 交集 automatic control technology dead-zone and saturation inverse Nyquist PID controller parameter stable regions intersection
  • 相关文献

参考文献17

  • 1Keel L H, Bhattacharyya S P. Controller synthesis free of analyti- cal models: three term controllers[ J]. IEEE Transactions on Au- tomatic Control, 2008,53(6) :1353 - 1369.
  • 2Bajcinca N. Design of robust PID controllers using decoupling at singular frequencies [ J ]. Automatica, 2006,42 ( 11 ) : 1943 - 1949.
  • 3Ho M T, Datta A, Bhattacharyya S P. Generalizations of the Her- mite-Biehler theorem: the complex case [ J]. Linear Algebra and Its Applications, 2000,320 ( 1 - 3 ) :23 - 26.
  • 4Ackermann J, Kaesbauer D. Stable polyhedra in parameter space [ J ]. Automatica, 2003,39 ( 5 ) :937 - 943.
  • 5方斌.时滞系统PID控制器参数稳定域的实现[J].电子科技大学学报,2011,40(3):411-417. 被引量:7
  • 6方斌.时滞系统PID控制器增益的稳定范围研究[J].信息与控制,2009,38(5):546-551. 被引量:6
  • 7Grimm G, Hatfield J, Postlethwaite I, et al. Antiwindup for stable linear systems with input saturation: an LMI-based synthesis[ J]. IEEE Transactions on Automatic Control, 2004,48 (9) : 1509 - 1525.
  • 8Hu T, Teel A R, Zaccarian L. Anti-windup synthesis for linear control systems with input saturation : achieving regional, nonlinear performance [ J ]. Automatica, 2008,44 ( 2 ) :512 - 519.
  • 9Sajjadi-Kia S, Jabbari F. Scheduled static anti-windup augmenta- tion synthesis for open-loop stable plants [ C ] J/American Control Conference ( ACC), 2010. Baltimore: IEEE, 2010:6751 - 6756.
  • 10Isayed B M, Hawwa M A. A nonlinear PID control scheme for hard disk drive servo systems [ C ] // MED'07. Mediterranean Conference on Control & Automation. Athens: IEEE, 2007:1 - 6.

二级参考文献18

  • 1欧林林,顾诞英,张卫东.线性时滞系统的PID控制器稳定参数集算法[J].上海交通大学学报,2006,40(7):1117-1121. 被引量:3
  • 2Keel L H, Bhattacharyya S E Controller synthesis free of analytical models: Three term controllers[J]. IEEE Transactions on Automatic Control, 2008, 53(6): 1353-1369.
  • 3Bajcinca N. Design of robust PID controllers using decoupling at singular frequencies[J]. Automatica, 2006, 42(11): 1943- 1949.
  • 4Silva G J, Datta A, Bhattacharyya S E New results on the synthesis of PID controllers[J]. IEEE Transactions on'Automatic Control, 2002, 47(2): 241-252.
  • 5Bellman R, Cooke K. Differential-Difference Equations[M]. London, UK: Academic Press Inc., 1963.
  • 6Oliveira V A, Teixeira M C M, Cossi L. Stabilizing a class of time delay systems using the Hermite-Biehler theorem[J]. Linear Algebra and Its Applications, 2003, 369(1): 203-216.
  • 7Ho M T, Datta A, Bhattacharyya S E Generalizations of the Hermite-Biehler theorem: The complex case[J]. Linear Algebra and Its Applications, 2000, 320(1-3): 23-26.
  • 8KEEL L H, BHATTACHARYYA S P. Controller synthesis free of analytical models: Three term controllers[J]. IEEE Transactions on Automatic Control, 2008, 53(6): 1353-1369.
  • 9HOHENBICHLER N, ABEL D. Calculating all Kp admitting stability of a PID control loop[C]//Proceedings of the 17th World Congress. Seoul, Korea: The International Federation of Automatic Control, 2008, 7: 6-11.
  • 10BAJCINCA N. Design of robust PID controllers using decoupling at singular frequencies[J]. Automatica, 2006, 42(11): 1943-1949.

共引文献9

同被引文献66

引证文献6

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部