期刊文献+

连续最大流图像分割模型及算法 被引量:4

Image segmentation model and algorithm based on continuous max-flow approach
原文传递
导出
摘要 最大流模型是图像分割领域强有力的工具。近年来,一种基于连续的最大流模型被提出并有效应用于图像分割。然而,该模型的空间流约束变量为全局常数,未与图像的结构特征相联系。同时,源和汇的初始值计算量大,模型的数值实现效率不甚理想。针对这些问题,结合图像的结构、统计特征和预处理算法(包括分片常数算法和最大类间方差—直方图算法),给出了连续最大流图像分割模型及算法。实验结果验证了本文算法的有效性,能够提高分割精度,加快运行速度。 The max-flow model is used as a powerful tool to image segmentation problems. In recent years, a new model based on the continuous max-flow approach is presented and well adapted to segment images. However, the constraint of spatial flow in the model is simply set to a global constant, and it is not associated with architectural feature. Meanwhile, the initial terms of the source flow and sink flow need large amount of calculation, and cannot obtain satisfactory segmenta- tion results. In order to overcome these shortages, we combine architectural features and statistical features of the image and a preprocessing algorithm, which include piecewise constant algorithm and Otsu-Histogram algorithm. Experimental results verify that the model is efficient .
出处 《中国图象图形学报》 CSCD 北大核心 2013年第11期1462-1467,共6页 Journal of Image and Graphics
基金 国家自然科学基金项目(11001075) 河南省教育厅自然科学基础研究基金项目(2009B110006) 河南省基础与前沿技术研究计划项目(132300410150)
关键词 最大流 连续 图像分割 分片常数 max-flow continuous image segmentation piecewise constant
  • 相关文献

参考文献14

  • 1杨建功,汪西莉.一种结合图割与双水平集的图像分割方法[J].计算机工程与应用,2012,48(3):195-197. 被引量:8
  • 2Kolmogorov V, Boykov Y. What metrics can be approximated by geo-cuts , or global optimization of length / area and flux [R]. Beijing: ICCV, 2005: 564-571.
  • 3Strang G. Maximal flow through a domain [J]. Mathematical Programming, 1983, 26(2) : 123-143.
  • 4Strang G. Maximum flows and minimum cuts in the plane [J]. Advances in Mechanics and Mathematics, 2008 ,3 ( 1 ) : 1-11.
  • 5Appleton B, Talbot H. Globally Optimal Surfaces by Continuous Maximal Flows[M]. Digital Image Computing: Techniques and Applications, 2003, 987 -996.
  • 6Appleton B, Talbot H. Globally minimal surfaces by continuous maximal flows[J]. IEEE PAMI, 2006, 28(1) :106-118.
  • 7Chan T, Esedoglu S, Nikolova M. Algorithms for finding global minimizers of image segmentation and denoising models [J]. SIAM Journal on Applied Mathematics, 2006, 66(5) :1632-1648.
  • 8Bae E, Yuan J, Tai X C. Global minimization for continuous multiphase partitioning problems using a dual approach [J]. International Journal of Computer Vision, 2011 , 92 (1) : 112-129.
  • 9Lellmann J, Kappes J, Yuan J, et al. Convex multi -class image labeling by simplex-constrained total variation [R]. Norway: SSVM, 2009,150-162.
  • 10Pock T, Chambolle A, Bischof H, et al. A convex relaxation approach for computing minimal partitions [R J. Miami: CVPR, 2009: 810-817.

二级参考文献10

  • 1Osher S,Sethian J.Fronts propagating with curvature dependent speed:algorithms based the Hamilton Jacobi formulation[J].Jour- hal of Computational Physics, 1998,79 ( 1 ) : 12-49.
  • 2Adalsteinsson D, Sethian J A.Fast level set method for propagat- ing interfaces[J].Journal of Computer Physics, 1995,118 (2) : 269-277.
  • 3Li Chunming.Level set evolution without re-initialization:a new variational formulation[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2005.
  • 4Wu Z,Leahy R.An optimal graph theoretic approach to data clus- tering:theory and its application to image segmentation[J].lEEE Transactions on Pattem Analysis and Machine Intelligence, 1993, 15(11):1101-1113.
  • 5Kolmogorov V, Zabih R.What energy functions can be minimized via graph cuts?[C]//Proceedings of European Conference on Com- puter Vision,2002:65-81.
  • 6Xu Ning, Ahuja N, Bansal R.Object segmentation using graph cuts based active contours[J].Computer Vision and Image Understand- ing, 2007,107 : 210-224.
  • 7Sethian J A.Fast marching level set methods for three dimen- sional photolithography development[C]//Proceeding of SPIE, San Diego, CA, USA, 1996,2726: 261-272.
  • 8Tsitsiklis J.Efficient algorithms for globally optimal trajectories[J]. IEEE Transactions on Automatic Control, 1995,40(9) ; 1528-1538.
  • 9Boykov Y,Kolmogorov V.An experimental comparison of Min- Cut/Max-Flow algorithms for energy minimization in vision[J]. IEEE Transactions on PAMI, 2004,26:1124-1137.
  • 10Boykov Y, Jolly M.Interactive graph cuts for optimal boundary and region segmentation of objects in n-d images[C]//Proceed- ings of IEEE International Conference on Computer Vision,2001, 1 : 105-112.

共引文献7

同被引文献45

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部