期刊文献+

有理单形问题的一个分析探析(英文)

An analytical approach to the Rational Simplex Problem
下载PDF
导出
摘要 1973年,Jeff Cheeger和James Simons提出了如下的问题:在三维球形空间中给定一个测地单形,其内部的所有二面角都是π的有理倍数,它的体积是否为一个3维球的体积的有理倍数?该问题被称为有理单形问题,迄今仍未解决。对有理单形问题的研究提出了一个分析探索方法,导出一个由初等函数的积分定义的函数f(x),证明了如果f(x)在一个充分接近零的有理数上取值为无理数,则有理单形问题的答案是否定的。 In 1973, Jeff Cheeger and James Simons raised the following question that still remains open and is known as the Rational Simplex Problem : given a geodesic simplex in spherical 3 - space so that all of its interior dihedral angles are rational muhiples of π, is it true that its volume is a rational multiple of the volume of the 3 - sphere? An analytical approach to the Rational Simplex Problem is pro- posed by deriving a functionf(t), defined as an integral of an elementary function, such that if there is a rational t, close enough to zero, such that the value f(t) is an irrational number then the answer to the Rational Simplex Problem is negative.
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2013年第5期561-565,共5页 Journal of Natural Science of Heilongjiang University
基金 Supported in part by the State Maintenance Program for Young Russian Scientists and the Leading Scientific Schools of the Russian Federation(NSh-921.2012.1)
关键词 球形空间 球复形 二面角 体积 希尔伯特第三问题 spherical space spherical simplex dihedral angle volume Hilbert' s third problem
  • 相关文献

参考文献17

  • 1MURAKAMI J. Volume formulas for a spherical tetrahedron [ J ]. Proceedings of the American Mathematical Society, 2012, 140 (9) : 3289 - 3295.
  • 2VINBERG E B. Volumes of non - Euclidean polyhedra[ J ]. Russian Mathematical Surveys, 1993, 48 ( 2 ) : 15 - 45.
  • 3AGOL I, STORM P, THURSTON W, et al. Lower bounds on volumes of hyperbolic Haken 3 - manifolds [ J ]. Journal of the American Mathemati-cal Society, 2007, 20(4) : 1053 -1077.
  • 4ALEXANDROV V. An example of a flexible polyhedron with nonconstant volume in the spherical space [ J ]. Beitrage Zur Algebra Vund Geometre, 1997, 38(1) : 11 -18.
  • 5SABITOV I K H. Algebraic methods for the solution of polyhedra [ J ]. Russian Mathematical Surveys, 2011,66 ( 3 ) : 445 - 505.
  • 6DUPONT J L, SAH C H. Three questions about simplices in spherical and hyperbolic 3 -space[ C]. The Gelfand Mathematical Seminars, 1996 - 1999. Birkhauser Boston, 2000:49 -76.
  • 7SOUAM R. The Schlatli formula for polyhedra and piecewise smooth hypersurfaces [ J ]. Differential Geometry and its Applications, 2004, 20 ( 1 ) : 31 -45.
  • 8GRADSHTEYN I S, RYZHIK I M. Table of integrals, series, and products [ M ]. Translated from the Russian. 7th ed. Amsterdam : Elsevier/Ac- ademic Press, 2007.
  • 9HUYLEBROUCK D. Similarities in irrationality proofs for qr, ln2,ζ (2) and ζ (3) [ J ]. The American Mathematical Monthly, 2001, 108 (3) : 222 -231.
  • 10VAN DER POORTEN A, APIARY R. A proof of the irrationality of S'(3 ) [ J ]. The Mathematical Intelligencer, 1979, 1 (4) : 195 -203.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部