期刊文献+

一种改进的加权L_1正则化稀疏光谱解混算法 被引量:1

An improved sparse spectral unmixing algorithm based on weighted L_1 regularization
下载PDF
导出
摘要 针对普通的加权L1正则化方法在进行稀疏光谱解混时,对空间信息利用不足的问题,提出了一种基于修正权值的L1范数正则化稀疏光谱解混方法。在加权L1优化求解过程中,根据当前的解以及空间信息得到下一步迭代的权值,能更好地利用混合像元丰度系数的稀疏性。实验结果表明,在较低的信噪比时,基于权值修正的加权L1正则化稀疏光谱解混比传统的迭代加权L1正则化的方法精度高。 Aiming at the shortcoming of spatial information exploitation in hyperspectral sparse unmixing based on normal reweighted L1 regularization, a method of sparse unmixing based on corrected reweighted L1 regularization is proposed. In the optimization process of weighted L1 , the method uses the value of current solution and spatial in- formation to get the weights for next iteration, which makes the sparsity of fractional abundances of mixed pixel be represented better. Experimental results indicate that the accuracy of sparse unmixing based on corrected reweight- ed L1 is higher than that of traditional reweighted L1 regularization for low signal-to-noise ratio hyperspectral images.
作者 王立国 谭健
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2013年第5期671-676,684,共7页 Journal of Natural Science of Heilongjiang University
基金 国家自然科学基金资助项目(61275010 61077079)
关键词 高光谱图像 稀疏解混 权值修正 空间信息 hyperspectral image sparse unmixing corrected weights spatial information
  • 相关文献

参考文献12

  • 1王立国,赵春晖.高光谱图像处理技术[M].北京:国防工业出版社,2013:1-33.
  • 2王立国,王群明,刘丹凤,吴永庆.基于几何估计的光谱解混方法[J].红外与毫米波学报,2013,32(1):56-61. 被引量:3
  • 3BIOUCAS-DIAS J, FIGUEIREDO M. Alternating direction algorithms for constrained sparse regression: application to hyperspectral unmixing [ C ]. The 2^nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing. Reykjavik, 2010:1 -4.
  • 4IORDACHE M D, BIOUCAS-DIAS J, PLAZA A. Sparse unmixing of hyperspectral data[ J ]. IEEE Transactions Geoscience and Remote Sensing, 2011,49(6) : 2014 -2039.
  • 5IORDACHE M, BIOUCAS-DIAS J, PLAZA A. Total variation spatial regularization for sparse hyperspectral unmixing[ J ]. IEEE Transactions Geo- science and Remote Sensing, 2012,50( 11 ) : 4484-4502.
  • 6吴泽彬,韦志辉,孙乐,刘建军.基于迭代加权L1正则化的高光谱混合像元分解[J].南京理工大学学报,2011,35(4):431-435. 被引量:14
  • 7刘雪松,王斌,张立明.基于非负矩阵分解的高光谱遥感图像混合像元分解[J].红外与毫米波学报,2011,30(1):27-32. 被引量:19
  • 8BIOUCAS - DIAS J, PLAZA A, DOBIGEON N, et al. Hyperspectral unmixing overview : geometrical, statistical, and sparse regression - based approaches[J]. IEEE J-STARS, 2012, 99:1 -16.
  • 9CANDES E J, WAKIN M B, BOYD S P. Enhancing sparsity by reweighted Lt minimization[ J ]. Journal of Fourier Aanlysis and Applications, 2008, 14(5): 877-905.
  • 10CHARTRAND R. Extract reconstruction of sparse signals via noneonvex minimization[ J ]. IEEE Signal Processing Letters, 2007, 14 (10) : 707 -710.

二级参考文献42

  • 1耿修瑞,张兵,张霞,郑兰芬.一种基于高维空间凸面单形体体积的高光谱图像解混算法[J].自然科学进展,2004,14(7):810-814. 被引量:21
  • 2祝宇鸿.一种改进的数字图像中值滤波算法[J].吉林大学学报(信息科学版),2001,19(2):23-27. 被引量:19
  • 3Chang C-I.Hyperspectral imaging:techniques for spectral detection and classification[M].New York:Plenum,2003.
  • 4Keshava N.A survey of spectral unmixing algorithms[J].Lincoln Lab.J.,2003,14(1):55-73.
  • 5Li J,Bioucas-Dias J M.Minimum Volume simplex analysis:a fast algorithm to unmix hyperspectral data[C].Boston:IEEE Geosci.Remote Sens.Symp.,2008,3:250-253.
  • 6Winter M E.N-find:an algorithm for fast autonomous spectral endmember determination in hyperspectral data[C].Denver:Proc.of the SPIE conference on imavng spectrometry Ⅴ,1999,3753:266-275.
  • 7Nascimento J,Bioueas-Dias J M.Vertex component analysis:a fast algorithm to unmix hyperspectral data[J].IEEE Trans.Geosci.Remote Sens.,2002,43(4):898-910.
  • 8Chang C-I,Wu C-C,Liu W,et al.A new growing method for simplex-based endmember extraction algorithm[J].IEEE Trans.Geosci.Remote Sens.,2006,44(10):2804-2819.
  • 9Tao X,Wang B,Zhang L.Orthogonal bases approach for decomposition of mixed pixels for hyperspectral imagery[J].IEEE Geosci.Remote Seas.Lett.,2009,6(2):219-223.
  • 10Lee D D,Seung H S.Learning the parts of objects by nonnegative matrix factorization[J].Nature,1999,401:788-791.

共引文献198

同被引文献2

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部