期刊文献+

L_p范数约束的多核半监督支持向量机学习方法 被引量:8

L_p Norm Constraint Multi-Kernel Learning Method for Semi-Supervised Support Vector Machine
下载PDF
导出
摘要 在机器学习领域,核方法是解决非线性模式识别问题的一种有效手段.目前,用多核学习方法代替传统的单核学习已经成为一个新的研究热点,它在处理异构、不规则和分布不平坦的样本数据情况下,表现出了更好的灵活性、可解释性以及更优异的泛化性能.结合有监督学习中的多核学习方法,提出了基于Lp范数约束的多核半监督支持向量机(semi-supervised support vector machine,简称S3VM)的优化模型.该模型的待优化参数包括高维空间的决策函数fm和核组合权系数m.同时,该模型继承了单核半监督支持向量机的非凸非平滑特性.采用双层优化过程来优化这两组参数,并采用改进的拟牛顿法和基于成对标签交换的局部搜索算法分别解决模型关于fm的非平滑及非凸问题,以得到模型近似最优解.在多核框架中同时加入基本核和流形核,以充分利用数据的几何性质.实验结果验证了算法的有效性及较好的泛化性能. Kernel method is an effective approach to solve the nonlinear pattern recognition problems in the field of machine learning. At present, multiple kernel method has become a new research focus. Compared with the traditional single kernel method, multiple kernel method is more flexible, more interpretable and has better generalization performance when dealing with heterogeneous, irregular and non-fiat distribution samples. A multi-kernel S3VM optimization model based on Lp norm constraint is presented in this paper in accordance with kernel method of supervised learning. Such model has two sets of parameters including decision functions fm in reproducing kernel Hilbert space and weighted kernel combination coefficients, and inherits the non-smooth and non-convex properties from single-kernel based S3VM. A two-layer optimization procedure is adopted to optimize these two groups of parameters, and an improved Quasi-Newton method named subBFGS as well as a local search algorithm based on label switching in pair are used to solve non-smooth and non-convex problems respectively with respect to fro. Base kernels and manifold kernels are added into the multi-kernel framework to exploit the geometric properties of the data. Experimental results show that the proposed algorithm is effective and has excellent generation performance.
出处 《软件学报》 EI CSCD 北大核心 2013年第11期2522-2534,共13页 Journal of Software
基金 国家自然科学基金(60975050) 广东省省部产学研结合专项(2011B090400477) 珠海市产学研合作专项资金(2011 A050101005 2012D0501990016) 珠海市重点实验室科技攻关项目(2012D0501990026) 中央高校基本科研业务费专项资金(20122 11020209) 桂林航天工业学院科研基金(Y12Z028)
关键词 半监督 支持向量机 拟牛顿法 多核学习 半监督支持向量机 semi-supervised support vector machine (SVM) quasi-Newton method multiple kemel learning semi-supervised supportvector machine (S3VM)
  • 相关文献

参考文献34

  • 1Chapelle O, Scholkopf B, Zein A. Semi-Supervised Learning. London: MIT Press, 2006.
  • 2Joachims T. Transductive inference for text classification using support vector machines. In: Bratko I, Dzeroski S, eds. Proc. of the 16th Int’l Conf. on Machine Learning (ICML’99). Morgan Kaufmann Publishers, 1999. 200-209. http://www.informatik.uni-trier. de/~ley/db/conf/icml/icml 1999.html.
  • 3Chapelle O, Sindhwani V, Keerthi SS. Optimization techniques for semi-supervised support vector machines. Journal of Machine Learning Research, 2008,9:203-233.
  • 4Chapelle O, Zent A. Semi-Supervised classification by low density separation. In: Cowell R, Ghahramani Z, eds. Proc. of the 10th Int’l Workshop on Artificial Intelligence and Statistics. Society for Artificial Intelligence and Statistics, 2005. 57-64. http://eprints.pascal-network.org/archive/00001144/01 /aistats2005 .pdf.
  • 5Collobert R, Sinz F, Weston J, Bottou L. Large scale transductive SVMs. Journal of Machine Learning Research, 2006,7(8): 1687-1712.
  • 6V Sindhwani, S Keerthi, O Chapelle. Deterministic annealing for semi-supervised kernel machines. In: Cohen WW, Moore A, eds. Proc. of the 23rd Int’l Conf. on Machine Learning. ACM, 2006. 841-848. http://dblp.uni-trier.de/rec/bibtex/conf/icml/SindhwaniK C06 [doi: 10.1145/1143844.1143950].
  • 7Chapelle O, Chi M, Zien A. A continuation method for semi-supervised SVMs. In: Cohen WW, Moore A, eds. Proc. of the 23rd Int’l Conf. on Machine Learning. ACM, 2006. 185-192. http://dblp.uni-trier.de/rec/bibtex/conf/icml/ChapelleCZ06 [doi: 10.1145/ 1143844.1143868].
  • 8De Bie T, Cristianini N. Semi-Supervised learning using semi-definite programming. In: Chapelle O, SchOelkopf B, Zien A, eds. Semi-supervised Learning. MIT Press, 2006.
  • 9Chapelle O, Sindhwani V, Keerthi S. Branch and bound for semi-supervised support vector machine. In: Sch61kopf B, Platt J, Hoffman T, eds. Proc. of the 20th Annual Conf. on Neural Information Processing Systems. Cambridge: MIT Press, 2006. 217-224. http://nips.cc/Conferences/2006/Committees/.
  • 10Wang HQ, Sun FC, Cai YN, Chen N, Ding LG. On multiple kernel learning methods. Acta Automatica Sinica, 2010,36(8): 1037-1050 (in Chinese with English abstract), [doi: 10.3724/SP.J.1004.2010.01037].

同被引文献145

  • 1赵卓翔,王轶彤,田家堂,周泽学.社会网络中基于标签传播的社区发现新算法[J].计算机研究与发展,2011,48(S3):8-15. 被引量:37
  • 2陆玉梅,梅强.中小企业安全管理现状调查与对策研究[J].中国安全科学学报,2006,16(6):86-91. 被引量:29
  • 3吴青,刘三阳,郑巍.基于乘性规则的支持向量机[J].智能系统学报,2007,2(2):74-77. 被引量:3
  • 4ZHU X J. Semi-supervised Learning Literature Survey[ R/OL]. University of Wisconsin, Madison Department of Computer Sciences ,2012 -03 - 15 [ 2014 - 03 - 15 ] http://diqital, library, wisc. edu/ 1793/60444.
  • 5Zhou Z H, Li M. Semi-supervised Learning by Disagreement [ J ]. Knowledge and Information Systems, 2010, 24 (3) : 415 - 439.
  • 6Blum A, Mitchell T. Combining Labeled and Unlabeled Data with Co-training. [ C ]//Proceedings of the 11 th Annual Conference on Computational Learning Theory ( COLT' 98 ). Wisconsin, USA: ACM, 1998:92 - 100.
  • 7Zhou Z H, Li M. Tri-training : Exploiting Unlabeled Data using Three Classifiers [ J ]. IEEE Transactions on Knowledge and Data Engi- neering,2005,17 ( 11 ) : 1529 - 1541.
  • 8Wang W, Zhou Z H. Co-Training with Insufficient Views [ C ]// Asian Conference on Machine Learning. Dallas, TX, USA : 1EEE, 2013 : 467 - 482.
  • 9Zhou Z H. Unlabeled Data and Multiple Views [ J ]. Partially Supervised Learning Lecture Notes in Computer Science, 2012,7081 : 1 - 7.
  • 10Darnsta dt M, Simon H U, Szo renyi B. Supervised Learning and Co-training[ J ]. Theoretical Computer Science, 2014, 519:68 -87.

引证文献8

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部