期刊文献+

专家证据文档识别无向图模型

Undirected Graph Model for Expert Evidence Document Recognition
下载PDF
导出
摘要 专家证据文档识别是专家检索的关键步骤.融合专家候选文档独立页面特征以及页面之间的关联关系,提出了一个专家证据文档识别无向图模型.该方法首先分析各类专家证据文档中的词、URL链接、专家元数据等独立页面特征以及候选专家证据文档间的链接和内容等关联关系;然后将独立页面特征以及页面之间的关联关系融入到无向图中构建专家证据文档识别无向图模型;最后利用梯度下降方法学习模型中特征的权重,并利用吉布斯采样方法进行专家证据文档识别.通过对比实验验证了该方法的有效性.实验结果表明,该方法有较好的效果. Expert evidence document recognition is the key step for expert search. Combining specialist candidate document independent page features and correlation among pages, this paper proposes an expert evidence document recognition method based on undirected graph model. First, independent page features such as words, URL links and expert metadata in all kinds of expert evidence document, and correlations such as links and content among candidate expert evidence document are analyzed. Then, independent page features and correlation among pages are integrated into the undirected graph to construct an undirected graph model for expert evidence document recognition. Finally, feature weights are learned in the model by using the gradient descent method and expert evidence document recognition is achieved by utilizing Gibbs Sampling method. The effectiveness of the proposed method is verified by comparison experiment. The experimental results show that the proposed method has a better effect.
出处 《软件学报》 EI CSCD 北大核心 2013年第11期2734-2746,共13页 Journal of Software
基金 国家自然科学基金(61175068) 教育部留学回国人员启动基金 云南省教育厅科研基金重大专项 云南省软件工程重点实验室开放基金(2011SE14)
关键词 专家证据文档 专家检索 独立页面特征 专家元数据 无向图模型 expert evidence document expert search independent page feature expert metadata undirected graph model
  • 相关文献

参考文献21

  • 1Balog K, Azzopardi L, de Rijke M. Formal models for expert finding in enterprise corpora. In: Proc. of the SIGIR 2006. New York: ACM Press, 2006. 43-50. [doi: 10.1145/1148170.1148181 ].
  • 2Tian W, Shen T, Yu ZT, Guo JY, Xian YT. A Chinese expert name disambiguation approach based on spectral clustering with the expert page-associated relationships. Lecture Notes in Electrical Engineering, 2013,256:2013. 245-253.
  • 3Zhang D, Lee WS. Question classification using support vector machines. In: Proc. of the 26th Annual Int’l ACM SIGIR Conf. on Research and Development in Informaion Retrieval. New York: ACM Press, 2003. 26-32. [doi: 10.1145/860435.860443].
  • 4Macdonald C, Ounis I. Voting for candidates: Adapting data fusion techniques for an expert search task. In: Proc. of the I5th ACM Int’l Conf. on Information and Knowledge Management. New York: ACM Press, 2006. 387-396. [doi: 10.1145/1183614.1183671].
  • 5Jordan Ml. Graphical models. Statistical Science, 2004,19(1):140-155. [doi: 10.1214/088342304000000026].
  • 6Luenberger DG. Optimization by Vector Space Methods. Hoboken: Wiley-Interscience, 1997.
  • 7Bron M, Balog K, de Rijke M. Ranking related entities: Components and analyses. In: Proc. of the 19th ACM Int’l Conf. on Information and Knowledge Management. New York: ACM Press, 2010. 1079-1088. [doi: 10.1145/ 1871437.1871574].
  • 8Aizawa A. An information-theoretic perspective of TF-IDF measures. Information Processing & Management, 2003,39(l):45-65. [doi: 10.1016/S0306-4573(02)00021 -3].
  • 9Wu ZJ, Yu ZT, Guo JY, Mao CL, Zhang YM. Fusion of long distance dependency features for Chinese named entity recognition based on Markov logic networks. In: Proc. of the Natural Language Processing and Chinese Computing. Natural Language Processing and Chinese Computing Communications in Computer and Information Science, 2012,333:132-142. [doi: 10.1007/978-3-642-34456-5_13].
  • 10Li LN, Yu ZT, Zou JJ, Su L, Xian YT, Mao CL. Research on entity homepage recognition method. Journal of Computational Information System, 2009,5(6):1617-1624.

二级参考文献14

  • 1Yu SX, Shi J. Segmentation given partial grouping constraints. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2004, 26(2): 173-183.
  • 2Hertz T, Shental N, Bar-Hillel A, Weinshall D. Enhancing image and video retrieval: Learning via equivalence constraint. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. Madison: IEEE Computer Society, 2003.668-674.
  • 3Wagstaff K, Cardie C, Rogers S, Schroedl S. Constrained K-means clustering with background knowledge. In: Brodley CE, Danyluk AP, eds. Proc. of the 18th Int'l Conf. on Machine Learning. Williamstown: Morgan Kaufmann Publishers, 2001. 577-584.
  • 4Klein D, Kamvar SD, Manning CD. From instance-level constraints to space-level constraints: Making the most of prior knowledge in data clustering. In: Sammut C, Hoffmann AG, eds. Proc. of the 19th Int'l Conf. on Machine Learning. Sydney: Morgan Kaufmann Publishers, 2002. 307-314.
  • 5Wagstaff K, Cardie C. Clustering with instance-level constraints. In: Langley P, ed. Proc. of the 17th Int'l Conf. on Machine Learning. Morgan Kaufmann Publishers, 2000. 1103-1110.
  • 6Zhou D, Bousquet O, Lal TN, Weston J, Scholkopf B. Learning with local and global consistency. In: Thrun S, Saul L, SchSlkopf B, eds. Advances in Neural Information Processing Systems 16. Cambridge: MIT Press, 2004. 321-328.
  • 7Shi J, Malik J. Normalized cuts and image segmentation. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2000,22(8): 888-905.
  • 8Gu M, Zha H, Ding C, He X, Simon H. Spectral relaxation models and structure analysis for k-way graph clustering and bi-clustering. Technical Report, CSE-01-007, Penn State University, 2001.
  • 9Ng AY, Jordan MI, Weiss Y. On spectral clustering: Analysis and an algorithm. In: Dietterich TG, Becker S, Ghahramani Z, eds. Advances in Neural Information Processing Systems (NIPS) 14. Cambridge: MIT Press, 2002, 894-856.
  • 10Meila M, Xu L. Multiway cuts and spectral clustering. Technical Report, 442, University of Washington, 2004.

共引文献93

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部