期刊文献+

一种概率-区间混合结构可靠性的高效计算方法 被引量:15

An efficient reliability analysis method for structures with probability-interval mixed uncertainty
下载PDF
导出
摘要 针对既有概率变量又有区间变量的混合不确定问题,构造了一种高效的结构可靠性分析方法。该方法将传统概率可靠性分析中的响应面方法引入混合模型的可靠性分析中,通过Bucher设计与梯度投影相结合的方法建立线性响应面,并采用一有效的解耦方法求解基于响应面建立的近似混合可靠性问题,通过迭代实现响应面更精确地近似真实极限状态函数。最后,通过两个算例验证了该算法的有效性。 A high efficient method is proposed to deal with reliability analysis of hybrid structures with random and interval variables. Response surface method in the traditional probability reliability analysis is applied to the hybrid uncertainty problem, combined Bucher design with vector projection method, a linear response surface is constructed, and then an efficient decoupling approach is used to solve an approximate hybrid reliability model which is created based on the response surface, after several times iteration,response surface is sufficiently close to the exact limit state function. Numerical examples are provided to demonstrate the effectiveness of the present method.
出处 《计算力学学报》 CAS CSCD 北大核心 2013年第5期605-609,共5页 Chinese Journal of Computational Mechanics
基金 国家自然科学基金(11172096) 国家重点基础研究发展计划(973)(2010CB832700) 教育部新世纪优秀人才(NCET-11-0124) 全国百篇优博专项基金(201235)资助项目
关键词 结构可靠性 混合不确定性 概率 区间 响应面 structural reliability hybrid uncertainty probability interval response surface
  • 相关文献

参考文献17

  • 1郭书祥,吕震宙.结构的非概率可靠性方法和概率可靠性方法的比较[J].应用力学学报,2003,20(3):107-110. 被引量:38
  • 2Elishakoff I, Colombi P. Combination of probabilistic and convex models of uncertainty when scare knowl- edge is present on acoustic excitation parameters[J]. Comput Meth Appl Mech Eng , 1993,104 : 187-209.
  • 3尼早,邱志平.结构系统概率-模糊-非概率混合可靠性分析[J].南京航空航天大学学报,2010,42(3):272-277. 被引量:16
  • 4曹鸿钧,段宝岩.基于凸集合模型的非概率可靠性研究[J].计算力学学报,2005,22(5):546-549. 被引量:67
  • 5Luo Y J, Kang Z, Alex L. Structural reliability assess- ment based on probability and convex set mixed mod- el[J]. Computers & Structures ,2009,87 : 1408-1415.
  • 6Kang Z,Luo Y J. Reliability-based structural optimi- zation with probability and eonvex set hybrid models [J]. Struct Multidisc Optim, 2010,42 : 89-102.
  • 7Qiu Z P, Yang D, Elishakoff I. Probabilistic interval reliability of structural systems [J]. Int J Solids Struct, 2008,45 : 2850-2860.
  • 8Jiang C, Han X,Li W X,et al. A hybrid reliability ap- proach based on probability and interval for uncertain structures[J]. ASME J Mech Des, 2012,134 (3) : 031001.
  • 9Bucher C G. Adaptive sampling-an iterative fast monte carlo procedure[J]. Struct Saf, 1998,5 (2) 119-26.
  • 10Faravelli L. A response surface approach for reliabi- lity analysis[J]. ASME J Eng Mech, 1989,115 (12) : 2763-2781.

二级参考文献30

  • 1麦华健.模糊可靠性概论[J].机械设计,1987,(6):15-20.
  • 2Ben-Haim Y, Elishakoff I. Convex models of uncertainty in applied mechanics[M]. Amsterdam: Elsevier Science, 1990.
  • 3Elishakoff I. Essay on uncertainties in elastic and viscoelastic structures: from A M Freudenthal's criticisms to modern convex modeling[J]. Computers &Structures, 1995, 56(6): 871-895.
  • 4Ben-Haim Y. A non-probabilistic concept of reliabitity[J]. Structural Safety, 1994, 14(4): 227-245.
  • 5Elishakoff I. Discussion on: a non-probabilistic concept of reliability[J]. Structural Safety, 1995, 17 (3) : 195-199.
  • 6Qiu Z P, Mueller P C, Frommer A. The new nonprobabilistic criterion of failure for dynamical systems based on convex models[J]. Mathematical and Computer Modelling, 2004, 40(11/2) : 201-215.
  • 7Reddy R K, Haldar A. A random-fuzzy reliability analysis In: Ayyub B M ed[C]//Proceedings of the First International Symposium on Uncertainty Modeling and Analysis. Los Alarnitos: IEEE Computer Society Press, 1990: 161-166.
  • 8Alefeld G, Herzberger J. Introductions to interval computations [M]. New York: Academic Press, 1983.
  • 9Moore R E. Methods and applications of interval analysis[M]. London: Prentice-Hall, Inc, 1979.
  • 10Rao M M. Probability theory with applications[M]. New York: Academic Press, 1984.

共引文献108

同被引文献143

引证文献15

二级引证文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部