期刊文献+

基于混合网格的低声爆反设计方法研究 被引量:3

Low boom inverse design method based on hybrid grid
下载PDF
导出
摘要 低声爆设计方法已成为新一代军民用超声速飞机研制过程中必须解决的关键难题之一。针对传统SGD低声爆外形反设计方法无法对声爆近场非线性效应进行描述和分析的缺点,提出了利用CFD方法求解得到的声爆近场压力分布代替F函数进行低声爆反设计的方法。声爆近场预测采用点-点对接的结构/非结构混合网格,充分利用非结构网格对复杂外形适应性强和结构化网格计算效率高的优点。结果分析表明,基于改进后的低声爆反设计方法得到的方案在声爆超压以及感觉噪声级等方面都比基于原始SGD方法得到的方案有较大改善。 Low sonic boom design method has become one key technology of next generation of supersonic aircraft. The original SGD method can't evaluate the nonlinear effect of sonic boom in near field. The near field pressure distribution is used in inverse design to replace the F function. Near field prediction of sonic boom is based on point to point structured/unstructured hybrid grid, avoiding the difficulty of generating structure grid on complex aircraft configuration and improving the analysis efficiency. The results demonstrate that the low boom configuration based on the new inverse design method has lower sonic boom overpressure and perceived level of loudness than low boom configuration based on original SGD method.
出处 《计算力学学报》 CAS CSCD 北大核心 2013年第5期717-722,共6页 Chinese Journal of Computational Mechanics
基金 西北工业大学博士论文创新基金(CX201232)资助项目
关键词 超声速客机 激波 声爆 反设计方法 结构 非结构混合网格 supersonic aircraft shock wave sonic boom inverse design method structure/unstructured hybrid grid
  • 相关文献

参考文献17

  • 1National Research Council. High Speed Research Aeronautics and Space Engineering Board U. S. Su-personic Commercial Aircraft: Assessing NASA :s High Speed Research Program[R]. National Acade- my Press, Washington, D. C. , 1997.
  • 2Seebass A R. Sonic boom theory[J]. Journal of Air- craft, 1969,6(13) : 177-184.
  • 3Haas A,Kroo I. A Multi-shock Inverse Design Meth- od for Low-Boom Supersonic Aircraft [R]. AIAA- 2010-843,2010.
  • 4Li W,Shields E,Le D. Interactive inverse design opti- mization of fuselage shape for low-boom supersonic concepts[J]. Journal of Aircraft ,2008,45(4) : 1381- 1398.
  • 5M Wintzer, I Kroo. Conceptual Design of Low Boom Sonic Boom Airxraft Using a Joint Based CFD[R]. Seventh International Conference on Computational Fluid Dynamics, Hawaii, 2012.
  • 6Howe D C. Improved Sonic Boom Minimization with Extendable Nose Spike[R]. AIAA-2005-1014,2005.
  • 7K Kusunose, K Matsushima. A Fundamental Study for the Development of Boomless Supersonic Trans- port Aircraft[R]. AIAA 2006-0654,2006.
  • 8陈鹏,李晓东.基于Khokhlov-Zabolotskaya-Kuznetsov方程的声爆频域预测法[J].航空动力学报,2010,25(2):359-365. 被引量:17
  • 9但聃.基于声爆和起降噪声要求的超音速公务机设计[D].中国航空研究院611所,2010.
  • 10冯晓强,李占科,宋笔锋.超音速客机音爆问题初步研究[J].飞行力学,2010,28(6):21-23. 被引量:22

二级参考文献28

  • 1Meredith K B,Dahlin J A,Graham D H, et al. Computational fluid dynamics comparison and flight test measure ment of F-5E off-body pressures [R]. AIAA Paper 2005- 0006,2005.
  • 2Hamilton M F, Blackstock D T. Nonlinear acoustics[M]. San Diego, USA: Academic Press, 1998.
  • 3Stanescu D, Hahashi W G. 2N-storage low dissipation and low-dispersion Runge-Kutta for computational acoustics[J].Journal of Computational Physics, 1998,143 : 674-681.
  • 4Khokhlova V A, Souchon R, Tavakkoli J, et al. Numerical modeling of finite-amplitude sound beams: shock formation in the near field of a cw plane piston source [J]. Journal of Acoustical Society of America, 2001, 110 (1): 95-108.
  • 5Maglieri D J, Plotkin K J. Sonic boom, chapter 10, aeroacoustics of flight vehicles[R]. NASA RP-1258,1991, 1: 519-561.
  • 6Whitham G B. The flow pattern of a supersonic projectile [J]. Communications on Pure and Applied Mathematics, 1952,5:301-348.
  • 7Seebass R. Sonic boom theory [J]. Journal of Aircraft, 1969,6 : 177-184.
  • 8Cleveland R O,Chambers J P,Bass H E et al. Comparison of computer codes for the propagation of sonic boom waveforms through isothermal atmospheres[J]. Journal of Acoustical Society of America, 1996,100 (5) : 3017-3027.
  • 9Carlson H W. An investigation of some aspects of the sonic boom by means of wind tunnel measurements of pressures about several bodies at a Mach number of 2.01 [R]. NASA TN D-161,1959.
  • 10Rosendale J V. Floating shock fitting via Lagrangian adaptive meshes[R]. NASA CR-194997,1994.

共引文献32

同被引文献22

  • 1宋述杰,邓建华.应用INS/GPS系统数据估计迎角和侧滑角的方法研究[J].西北工业大学学报,2005,23(2):231-234. 被引量:7
  • 2叶玮,郑守铎,温瑞珩.FADS/INS组合法迎角、侧滑角测量方法研究[J].飞机设计,2007,27(6):14-18. 被引量:12
  • 3A R Rodi, D C Leon. Correction of static pressure on a research aircraft in accelerated flight using differential pressure measure- ments[ J ]. Atmospheric Measurement Techniques, 2012,5 ( 11 ) : 2569 -2579.
  • 4Jiang Runlian, etc. The numerical simulation of equivalent static pressures distribution for the aircraft tire burst jets based on MAT- LAB[J]. International Journal of Control and Automation,2014,7 ( 1 ) :379 -390.
  • 5许光明,汤勇.尾旋迎角、侧滑角、滚转角和俯仰角的一种测算方法[J].飞行力学,1986—4:73—82.
  • 6Glenney, Kevin. Method to calculate sideslip angle and correct static pressure [ P ]. USA : 6561020,2003 - 05.
  • 7Y A Vershinin. A method of separation of an aircraft motion on a roll and sideslip [ J ]. Aircraft Engineering and Aerospace Tech- nology,2004,76(2) :179 - 184.
  • 8N G Verhaagen, C E Jobe. Wind - tunnel study on a 65 - deg delta wing at sideslip [ J ]. Journal of Aircraft,2003,40 (2) :290 - 296.
  • 9Hao Long, Shujie Song. Method of estimating angle - of - attackand sideslip angel based on data fusion[ C]. 2009 Second Inter- national Conference on Intelligent Computation Technology and Automation ,2009 - 1:641 - 644.
  • 10Wu Zhao, Wang Lixin. Engineering modeling and simulation for new estimation of aircraft's dynamic angles [ J ]. Communications in Computer and Information Science,2012,326( PART 1 ) : 112 -117.

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部