期刊文献+

一种任意次非均匀B样条的细分算法 被引量:2

A Subdivision Algorithm for Non-uniform B-Splines of Arbitrary Degree
下载PDF
导出
摘要 类似于经典的、应用于任意次均匀B样条的Lane-Riesenfeld细分算法,提出了一种任意次非均匀B样条的细分算法,算法包含加细和光滑两个步骤,可生成任意次非均匀B样条曲线。算法是基于于开花方法提出的,不同于以均匀B样条基函数的卷积公式为基础的Lane-Riesenfeld细分算法。通过引入两个开花多项式,给出了算法正确性的详细证明。算法的时间复杂度优于经典的任意次均匀B样条细分算法,与已有的任意次非均匀B样条细分算法的计算量相当。 A subdivision algorithm is presented for non-uniform B-splines of arbitrary degree in a manner similar to the Lane-Riesenfeld subdivision algorithm for uniform B-splines of arbitrary degree.The algorithm contains two steps:refining and smoothing,and achieves non-uniform B-Splines curve of arbitrary degree.The algorithm is based on blossoming rather than the continuous convolution formula for the uniform B-spline basis functions.Two blossoming polynomials are introduced to verify the correctness of the subdivision algorithm.The subdivision algorithm is more efficient than the classical uniform subdivision algorithm for B-splines of arbitrary degree,and as efficient as those currently available non-uniform subdivision algorithms for B-splines of arbitrary degree.
出处 《图学学报》 CSCD 北大核心 2013年第5期56-61,共6页 Journal of Graphics
基金 国家自然科学基金资助项目(61170107) 河北省教育厅自然科学研究项目(Q2012041)
关键词 计算机辅助几何设计 细分 开花 B样条 非均匀 节点插入 computer aided geometric design subdivision blossoming B-splines non-uniform knot insertion
  • 相关文献

参考文献12

  • 1Cashman T J, Dodgson N A, Sabin M A. A symmetric, non-uniform, refine and smooth subdivision algorithm for general degree B-spline [J]. Computer Aided Geometric Design, 2009, 26(4): 94-104.
  • 2Stam J. On subdivision schemes generalizing uniform B-spline surfaces of arbitrary degree [J]. Computer Aided Geometric Design, 2001, 18(5): 383-396.
  • 3Warren J. Weimer H. Subdivision methods for geometric design: a constructive approach [M]. Morgan Kaufxnann Publishers, 2001.
  • 4Boehm W. Inserting new knots into B-spline curves [J]. Computer Aided Design, 1980, 12(4): 199-201.
  • 5Chaikin G. An algorithm for high speed curve generation [J]. Computer Graphics and Image Processing, 1974, 3(4): 346-349.
  • 6Schaefer S, Goldman IL Non-uniform subdivision for B-spline of arbitrary degree [J]. Computer Aided Geometric Design, 2009, 26(1): 75-81.
  • 7Lane J, Riesenfeld R. A theoretical development for the computer generation and display of piecewise polynomial surfaces [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1980, 2(1): 35-46.
  • 8Goldman R, Warren J. An extension of Chaikin's algorithm to B-spline curves with knots in geometric progression [J]. Graphical Models and Processing, 1993, 55(1): 58-62.
  • 9Cohen E, Lyche T, Riesenfeld R. Discrete B-splines and subdivision techniques in computer-aided geometric design and computer graphics [J]. Computer Graphics and Image Processing, 1980, 14(2): 87-111.
  • 10Zorin D, Schr6der P. A unified framework for primal/dual quadrilateral subdivision schemes [J]. Computer Aided Geometric Design, 2001, 18(5): 429-454.

同被引文献20

  • 1刘周,朱自强,付鸿雁,吴宗成.高升阻比翼型的设计[J].空气动力学学报,2004,22(4):410-415. 被引量:25
  • 2王晓璐,朱自强,刘周,吴宗成.基于N-S方程的翼型双设计点双目标优化设计[J].北京航空航天大学学报,2006,32(5):503-507. 被引量:12
  • 3Song W, Keane A J. A study of shape parameterization methods for airfoil optimization, AIAA 2003-4482 [R]. Reston: American Institute of Aeronautics and Astronautics, 2004.
  • 4Hicks R M, Hennet P A. Wing design by numerical optimization [J]. Journal of Aircraft, 1978, 15(7): 407 -412.
  • 5Sobieczky H. Parametric airfoils and wings [M]//Notes on Numerical Fluid Mechanics (NNFM): Recent Development of Aerodynamic Design Methodologies. Germany: Vieweg Teubner Verlag, 1990: 71-87.
  • 6Kulfan B M, Bussoletti J E. "Fundamental" parametric geometry representations for aircraft component shapes, AIAA 2006-6948 [R]. Reston: American Institute of Aeronautics and Astronautics, 2006.
  • 7Lepine J, Guibauh F, Trepanier J Y, et al. Optimized nonuniform rational B-spline geometrical representation for aerodynamic design of wings [J]. American Institute of Aeronautics and Astronautics, 2001, 39(11): 570-577.
  • 8Sobester A, Keane A J. Airfoil design via cubic splines - Ferguson's curves revisited, AIAA 2007-2881 [R]. Reston: American Institute of Aeronautics and Astronautics, 2007.
  • 9Brakhage K H, Lamby P. Application of B-spline techniques to the modeling of airplane wings and numerical grid generation [J]. Computer Aided Geometric Design, 2008, 25(9): 738-750.
  • 10Juttler B, Felis A. Least-squares fitting of algebraic spline curves via normal vector estimation [J]. Advances in Computational Mathematics, 2002, 17(1): 135-152.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部