期刊文献+

无人机全包线模糊T-S建模 被引量:1

Design of fuzzy T-S model of unmanned aerial vehicle in full envelope
下载PDF
导出
摘要 针对无人机大包线一体化飞行控制要求,提出全包线模糊T-S(Takagi-Sugeno)建模方法.该方法根据非仿射系统的局部线性化原理,将模糊T-S建模转化为仅对模糊规则中隶属度函数的中心和宽度的优化过程,优化的代价函数为模糊T-S模型对无人机全包线稳定性和操纵性的逼近误差的加权值.基于敏感度逐步扩展前件变量的模糊集以实现全局优化,确定模糊规则的数量和隶属度函数的初值.采用对正则因子启发式调整的Levenberg-Marquardt算法进行快速的局部优化.算例表明,建模算法收敛迅速,所建立的模糊T-S模型采用少量模糊规则实现了对无人机全包线稳定性和操纵性的高精度逼近,适用于无人机全包线一体化控制. The method of constructing fuzzy T-S model in full envelope was designed for the integrated flight control of unmanned aerial vehicle (UAV) in entire envelope. Based on the local linearization of non-af- fine system, the design of fuzzy T-S model was transformed to the optimization of the centers and width of membership functions, with the weighted approximation errors of the stability and handing performances of UAV as cost function. The global optimization was conducted via extension of fuzzy sets of premise variables according to the sensitivity, providing the number of fuzzy rules and initial value of membership functions. Fast local optimization was performed employing Levenberg-Marquardt algorithm with the heuristic modification of regular factor. The example shows the algorithm converges rapidly, and that the fuzzy T-S model constructed realizes high-precision approximation of stability and handing performances of UAV in full envelope with less fuzzy rules, which is suitable for the integrated control of UAV in full envelope.
作者 刘智 王勇
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2013年第9期1181-1186,共6页 Journal of Beijing University of Aeronautics and Astronautics
关键词 局部线性化 模糊T—S模型 全飞行包线 Levenberg—Marquardt算法 local linearization fuzzy T-S model full flight envelope Levenberg-Marquardt algorithm
  • 相关文献

参考文献10

  • 1Adams R J, Buffington J M, Banda S S. Gain scheduled linear PID autopilot for the AIAA controls design challenge aircraft [ C]//AIAA Guidance, Navigation and Control Conference and Exhibit. Hilton Head Island ,South Carolina:AIAA, 1992 : 1548- 1558.
  • 2Marcos A, Bennani S. LPV modeling, analysis and design in space systems rationale objectives and limitations [ C ]//AIAA Guidance, Navigation and Control Conference and Exhibit. Chi- cago, Illinois : AIAA ,2009 :092407-1-23.
  • 3Feng Gang. A survey on analysis and design of model-based fuzzy control systems [ J]. IEEE Transactions on Fuzzy Systems,2006, 14 ( 5 ) : 676-697.
  • 4Gao Qing,Zeng Xiaojun, Feng Gang, et al. T-S fuzzy model based approximation and controller design for general nonlinear systems I J]. IEEE Transactions on Systems, Man, and Cybernetics,Part B : Cybernetics ,2012,42 ( 4 ) : 1143 - 1154.
  • 5Butler E J, Wang O H, Burken J J. Takagi-Sugeno fuzzy model based flight control and failure stabilization [ J]. Journal of Guid- naee, Control, and Dynamics ,2011,34 ( 5 ) : 1543 - 1555.
  • 6Hu X,Wu L, Hu C ,et al. Fuzzy guaranteed cost tracking control for a flexible air-breathing hypersonic vehicle [ J ]. IET Control Theory and Applications ,2012,6 ( 9 ) : 1238-1249.
  • 7Li Chaoshun, Zhou Jianzhong, Xiang Xiuqiao, et al. T-S fuzzy model identification based on a novel fuzzy c-regression model clustering algorithm [ J ]. Engineering Applications of Artificial Intelligence ,2009,22 (4/5) :646-653.
  • 8Wu Shiqian, Er Meng Joo. Dynamic fuzzy neural networks-a novel approach to function approximation [ J ].IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2000, 30(2) :358-364.
  • 9Simon Haykin. Neural networks and learning machines [ M ]. 3rd ed. Beijing : China Machine Press ,2009 : 197 - 199.
  • 10Tanaka K,Wang O H. Fuzzy control systems design and analy- sis:a linear matrix inequality approach [ M ]. New York:John Wiley and Sons Inc,2001:10-25.

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部