期刊文献+

带非连续解椭圆问题的3次Hermite配点方法

Cubic Hermite Collocation Method for Solving the Elliptic Problem with a Discontinuous Solution
下载PDF
导出
摘要 使用3次Hermite配点方法,对一类带有非连续解的椭圆问题进行数值求解,將其解的不连续点取作网格节点,解在不连续点的左右极限作为未知量,结合解在不连续点的"跳跃"信息对原问题进行离散.数值实验表明此方法的收敛阶为O(h4). The cubic Hermite collocation method is used in discretization of an elliptic problem with a discontinuous solution.The discontinuous points of the solution are taken as grid points,the left and right limits of the solution at the discontinuous points as unknowns.The jumpings of the solution at the discontinuous points are combined to dicrete the original problem.The test indicates that the method has the convergence of order O(h4).
出处 《吉首大学学报(自然科学版)》 CAS 2013年第4期16-18,共3页 Journal of Jishou University(Natural Sciences Edition)
基金 国家自然科学基金资助项目(10901027)
关键词 椭圆问题 HERMITE插值 配点方法 elliptic problem Hermite interpolation collocation method
  • 相关文献

参考文献5

  • 1LEVEQUE R J,LI Zhi-lin.The Immersed Interface Method for Elliptic Equations with Discontinuous Coefficients andSingular Sources[J].SIAM Journal on Numerical Analysis,1994,31:1 019-1 044.
  • 2TIKHONOV A N,SAMARSKII A A.Homogeneous Difference Schemes[J].USSR Computational Mathematics andMathematical Physics,1962(1):5-67.
  • 3HUANG W Z,RUSSELL R D.A Moving Collocation Method for the Numerical Solution of Time Dependent Differen-tial Equations[J].Applied Numerical Mathematics,1996,20:101-116.
  • 4MA Jing-tang,JIANG Ying-jun.Moving Mesh Methods for Blow up in Reaction-Diffusion Equations with TravelingHeat Source[J].Journal of Computational Physics,2009,228:6 977-6 990.
  • 5马敬堂,姜英军.带插值的自适应网格重构算法求解带移动热源的反应扩散方程的理论分析[J].中国科学:数学,2011,41(3):235-251. 被引量:2

二级参考文献1

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部