期刊文献+

托卡马克内部线圈套管导体偏心缺陷的涡流检测方法 被引量:2

Testing of Eccentricity in Tokamak In-vessel Coil Conductors
下载PDF
导出
摘要 在托卡马克装置中,内部线圈(IVCs)为三层套管导体结构,内管为铜管,外管为Inconel/不锈钢合金管,两管之间采用陶瓷层提供辐射电阻,使内外管绝缘。在内部线圈的加工成型过程中,套管导体结构内部铜管有可能产生与外侧钢管不同轴,即偏心缺陷,导致中间陶瓷绝缘层厚度分布不均匀,降低整个内部线圈的性能。因此对套管导体是否发生偏心及偏心程度进行在线无损检测和评价非常重要。针对偏心检测,笔者提出了基于涡流检测的方法,并基于退化磁矢位Ar法对其有效性进行了有限元数值分析,探究了检测信号与偏心距离间的关联规律,同时通过初步试验,验证了其可行性。 The conductor of in-vessel coil (IVCs) in Tokamak is three-layer tubular structure. It consists of a water-cooled copper alloy as an inner tube surrounded by ceramic insulation and a stainless-steel alloy jacket tube. During manufacture of IVCs, eccentricity may occur between the copper tube and stainless-steel tube. It leads to thickness change in the insulation layer and may seriously influence the performance of the entire IVC. Therefore, it is crucial to detect and quantitatively evaluate the eccentricity via online non-destructive testing means. In this paper, an eddy current testing (ECT) based method is proposed to detect the eccentricity of IVC conductors. A finite element model for multi-frequency eddy current testing of IVC eccentricity is built based on the reduced magnetic vector potential method (Ar ) to investigate the dependence of the ECT signals on the tube eccentricity. In addition, a preliminary experiment is also conducted to check the feasibility of the proposed method for practical application.
出处 《无损检测》 2013年第10期63-66,共4页 Nondestructive Testing
基金 国家自然科学基金资助项目(51277139 11021202) 国家磁约束聚变资助项目(2013GB113005) 国家973资助项目(2011CB610303)
关键词 内部线圈 涡流检测 偏心距离 有限元数值计算 In-vessel coils Eddy current testing Eccentricity Finite element modeling
  • 相关文献

参考文献8

  • 1SCAFFER M, MENARD J, ALDAN M, et al. Study of in-vessel nonaxisyrmnetric ELM suppression coil concepts for ITER[J]. Nuclear fusion,2008(48):1-14.
  • 2VILLARLR, PETRIZZIL, BROLATTIG, etal.Three-dimensional neutronic analysis of the ITER in- vessel coils[J]. Fusion Engineering and Design, 2011 (86) : 584-587.
  • 3CHEN Z, YUSA N, MIYA K. Some advances in nu- merical analysis techniques for quantitative electromag- netic nondestructive evaluation [ J ]. Nondestructive Testing and Evaluation, 2009(24) : 69-104.
  • 4张东利,陈振茂,武美先,毛赢.多频涡流裂纹重构方法及其在金属夹芯板焊部裂纹定量检测中的应用[J].无损检测,2010,32(8):556-559. 被引量:5
  • 5LI Y, THEODOUILDIS T,TIAN G. Magnetic field- based eddy-current modeling for multilayered speci- mens [J]. IEEE Transactions on Magnetics, 2007 (43) : 4010-4015.
  • 6LI Y, CHEN Z, MAO Y, et al. Quantitative evaluation of thermal barrier coating based on eddy current technique [J]. NDT&E International, 2012(50) ..29-35.
  • 7FUKUTONI H, TAKAGI T, TANI J, et al. Three- dimensional finite element computation of a remote field eddy current technique to non-magnetic tubes [J]. J JSAEM, 1998(6): 343-349.
  • 8NARDON E, HUYSMANS G, CZARNY O, et al. Edge localized modes control by resonant magnetic per- turbations[J]. Journal of Nuclear Materials, 2007 (363- 365) .. 1071-1075.

二级参考文献9

  • 1卢天健,何德坪,陈常青,赵长颖,方岱宁,王晓林.超轻多孔金属材料的多功能特性及应用[J].力学进展,2006,36(4):517-535. 被引量:250
  • 2Yusa N, Janousek L, Rebican M, et al. Detection of embedded fatigud cracks in Inconel weld overlay and the evaluation of the minimum thickness of the weld overlay using eddy current testing [J]. Nuclear Engineering and Design, 2006,236 (18) : 1 -- 8.
  • 3Yusa N, Machida E, Janousek L, et al. Application of eddy current inversion technique to the sizing of defects in Inconel welds with rough surfaces[J]. Nuclear Engineering and Design,2005,235(14):1469-1480.
  • 4Yusa N, Janousek L, Rebican M, et al. Eddy current inversions of defects in rough welds using a simplified computational model[J]. Nondestructive Testing and Evaluation, 2005,20(3) : 191-- 199.
  • 5Maeda T, Mizuno S, Yamada S, et al. Eddy current testing or weld zone defects using a meander probe[J]. Journal of the Magnetics Society of Japan, 2001, 25 (4):1067--1070.
  • 6Smith J H, Dodd C V, Chitwood L D. Multifrequency eddy current examination of seam weld in steel sheath [J]. Materials Evaluation, 1985,43(12) : 1566-- 1572.
  • 7Meier W. Basic research into eddy current testing of austenitic weld joints and surface claddings[J]. Materials Testing, 1976,18(10): 376--379.
  • 8Chen Z. Enhancement of ECT technique by probe optimization and reconstruction of cracks, in Quantum En- gineering and Systems Science[C]. Tokyo: University of Tokyo, 1997.
  • 9黄建明,林俊明.焊缝电磁涡流检测技术[J].无损检测,2004,26(2):95-98. 被引量:33

共引文献4

同被引文献10

  • 1SCHAFFER M J, MENARD J E, ALDAN M P, et al. Study of in-vessel nonaxisymmetric EI.M suppres- sion coil concepts for ITER [J]. Nuclear Fusion, 2008, 48(2): 1-14.
  • 2VILLARI R, PETRIZZI L, BROLATTI G, et al. Three-dimensional neutronic analysis of the ITER in- vessel coils[J]. Fusion Engineering and Design, 2011, 86(6) : 584-587.
  • 3YONG L, CHEN Z, MAO Y, et al. Quantitative evalua- tion of thermal harrier coating based on eddy current tech- nique[J]. NDT & E International, 2012, 50:29-35.
  • 4FUKTOMI H, TAKAGI T, NISHIKAWA M. Re- mote field eddy current technique applied to non-mag- netic steam generator tubes[J]. NDT & E Interna- tional, 2001, 34(1): 17-23.
  • 5NARDON E, BECOULET M, HUYSMANS G, et al. Edge localized modes control by resonant magnetic perturbations[J]. Journal of Nuclear Materials, 2007, 363:1071 -1075.
  • 6SCHAFFER M J, MENARD J E, ALADN M P, et al. Study of in-vessel nonaxisymmetric ELM suppression coil concepts for ITER [J]. Nuclear Fusion, 2008, 48(2):1-14.
  • 7VILLARI R, PETRIZZI L, BROLATTI G, et al. Three-dimensional neutronic analysis of the ITER in- vessel coils[J]. Fusion Engineering and Design, 2011, 86(6) : 584-587.
  • 8FUKUTOMI H, TAKAGI T, NISHIKAWA M. Remote field eddy current technique applied to non- magnetic steam generator tubes[J]. NDT & E Inernational, 2001, 34(1) : 17-23.
  • 9JEFFWCF,HAMADEM.实验设计与分析及参数优化[M].北京:中国统计出版社,2003.
  • 10赵宏达,李勇,陈振茂,刘小川,武玉.基于柔性涡流探头的托卡马克内部线圈导体偏心涡流检测[J].无损检测,2014,36(11):11-13. 被引量:2

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部