摘要
In the present work Mn3O4/reduced graphene oxide hydrogel (Mn3O4-rGOH) with three dimensional (3D) networks was fabricated by a hydrothermal self-assembly route. The morphology, composition, and microstructure of the as-obtained samples were characterized using powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetry analysis (TG), atomic absorption spectrometry (AAS), field emission scanning electron microscopy (FESEM) and transmission electron microscope (TEM). Moreover, the electrochemical behaviors were evaluated by cyclic voltammogram (CV), galvanostatic charge-discharge and electrochemical impedance spectroscopy (EIS). The test results indicated that the hydrogel with 6.9% Mn3O4 achieved specific capacitance of 148 F.g^-1 at a specific current of 1 A.g^-1, and showed excellent cycling stabilily with no decay after 1200 cycles. In addition, its specific capacitance could retain 70% even at 20 A.g^- 1 in comparison with that at 1 A.g ^-1 and the operating window was up to 1.8 V in a neutral electrolyte.
In the present work Mn3O4/reduced graphene oxide hydrogel (Mn3O4-rGOH) with three dimensional (3D) networks was fabricated by a hydrothermal self-assembly route. The morphology, composition, and microstructure of the as-obtained samples were characterized using powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetry analysis (TG), atomic absorption spectrometry (AAS), field emission scanning electron microscopy (FESEM) and transmission electron microscope (TEM). Moreover, the electrochemical behaviors were evaluated by cyclic voltammogram (CV), galvanostatic charge-discharge and electrochemical impedance spectroscopy (EIS). The test results indicated that the hydrogel with 6.9% Mn3O4 achieved specific capacitance of 148 F.g^-1 at a specific current of 1 A.g^-1, and showed excellent cycling stabilily with no decay after 1200 cycles. In addition, its specific capacitance could retain 70% even at 20 A.g^- 1 in comparison with that at 1 A.g ^-1 and the operating window was up to 1.8 V in a neutral electrolyte.
基金
Acknowledgement We gratefully acknowledge the financial support offered by the National Natural Science Foundation of China (Nos. 20963009 and 21163017), the Gansu Science and Technology Committee (No. 0803RJA005), and the Postgraduate Advisor Program of Provincial Education Department of Gansu.