期刊文献+

实值无穷可分随机测度生成的向量随机测度

Vector Random Measures Generated by Real-valued Infinitely Divisible Random Measures
下载PDF
导出
摘要 设 X是一个可分 Banach空间且 X具有 type2 .建立了由实值无穷可分的对称独立散射随机测度所生成的 X-值的随机测度的弱 * 收敛的结果 . Let Xbe a separable Banach space and Xbe of type2 .We establish some results on the weak* convergence of Banach space- valued random measures generated by real- valued infinitedly divisible symmotric independently scattered random measures.
出处 《上海师范大学学报(自然科学版)》 2000年第3期12-17,共6页 Journal of Shanghai Normal University(Natural Sciences)
基金 国家自然科学基金项目!(1 980 1 0 2 3)
关键词 弱*收敛 实值无穷可分随机测度 向量随机测度 weak* convergence symmetric independently scattered random measure real- valued infinitely divisible random measure control measure
  • 相关文献

参考文献10

  • 1BOCHNER S. Sochastic processes[J]. Ann Math, 1947, 48: 1014-1061.
  • 2DIESTEL J, UHL J J JR. Vector measures[M]. American Mathematlcal Society, Providence, 1977.
  • 3HOFFMANN-JORGENSEN J, PISIER G, The law of large numbers and the central limit theorem in Banach spaces[J]. Ann Probab, 1976, 4:587- 599.
  • 4LINDE W. Infinitely divisible and stable measures on Banach spaces[M]. Teubner Texle Zur Mathe matik, Bd 58, Teibner, Leipzig, 1983.
  • 5ROSINSKI J. Random integrats of Banach space vatued funcrions[J]. Stud Math, 1984, 78.
  • 6THANG D H. Vector symmetric random measures artd random integrals[J]. Theor Probab Aopl,1994, 36.
  • 7THANG D H, On the convergence of vector random measures[J], Probab Th Rel Fields, 1991, 88:1-16.
  • 8KELLEY J L. General topology[M]. D Van Nostrartd Co Inc Princeton N J, 1955.
  • 9HOFFMANN-JORGENSEN J. Probabitity irt Bartach spaces[M]. New York: Springer Vertag Berlin/ Heidelberg, 1977.
  • 10曾六川,杨亚立.Banach空间值的对称独立散射随机测度的弱*收敛性[J].数学年刊(A辑),1997,1(3):375-380. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部