摘要
In this paper we present the physical design of the pulsed sextupole injection system for Beijing Advanced Photon Source (BAPS) with an ultralow emittance. The BAPS ring lattice is designed in such a way that two options of pulsed sextupole injection are allowed, i.e., with septum and pulsed sextupole in different drift spaces or in the same drift space. We give the magnetic parameters of the injection system and the optimal condition of the optical flmctions for both options. In addition, we find that the pulsed sextupole induces position-dependent dispersive effect and causes a non-ignorable effect on the injection efficiency in a storage ring with a relatively small acceptance, which should be well considered.
In this paper we present the physical design of the pulsed sextupole injection system for Beijing Advanced Photon Source (BAPS) with an ultralow emittance. The BAPS ring lattice is designed in such a way that two options of pulsed sextupole injection are allowed, i.e., with septum and pulsed sextupole in different drift spaces or in the same drift space. We give the magnetic parameters of the injection system and the optimal condition of the optical flmctions for both options. In addition, we find that the pulsed sextupole induces position-dependent dispersive effect and causes a non-ignorable effect on the injection efficiency in a storage ring with a relatively small acceptance, which should be well considered.
基金
Supported by Special Fund of Chinese Academy of Sciences(H9293110TA)