摘要
讨论了连续函数空间 C(Ω )上的 Bartle积分算子与其表示测度之间的关系 .证明了只要μ是非负 Borel测度 ,包含映射 J:C( Ω)→ L1( μ)就是绝对可和算子 ,同时也是 Pietsch积分算子 ,且‖J‖ as=‖J‖ pint=μ( Ω) .而 μ的正则性保证了由 G( E) =χE定义的向量测度 G是
Relations between the Bartle integral operators on the continuous function space C(Ω) and their representing measures are discussed.We prove that if μ is a nonnegative Borel measure on Ω, then the natural inclusion J:C(Ω)→L 1(μ) is an absolutely summing operator and a Pietsch integral operator with ‖J‖ as =‖J‖ pint =μ(Ω), and the regularity of μ guarantee that the vector measure G:Σ→L 1(μ), defined by G(E)=χ E, is the representation measure of J.
出处
《内蒙古大学学报(自然科学版)》
CAS
CSCD
2000年第6期568-571,共4页
Journal of Inner Mongolia University:Natural Science Edition
基金
内蒙古自然科学基金资助项目!(批准号 990 30 1- 1 )