期刊文献+

Absorption enhancement of silicon solar cell with Ag nanoparticles by surface plasmons resonance 被引量:2

Absorption enhancement of silicon solar cell with Ag nanoparticles by surface plasmons resonance
原文传递
导出
摘要 The absorption enhancements of silicon layer in silicon solar cells with three kinds of Ag nanoparticles including sphere,cylinder and cuboid are studied by the finite difference time domain(FDTD)method,respectively.The results show that the light absorption of silicon is significantly improved due to the localized surface plasmon(LSP)resonance.The relations of the absorption enhancement with the parameters of nanoparticles are thoroughly analyzed.The optimal absorption enhancement can be achieved by adjusting the relevant parameters.Among the three types of Ag nanoparticles,i.e.,sphere,cylinder and cuboid,the silicon with the cubical Ag nanopaticles shows the most efficient absorption enhancement at optimal conditions,its maximum absorption enhancement factor is 1.35,and that with the spherical Ag nanopaticles gets the lowest absorption enhancement.The work is useful for the further theoretical study and design for the plasmonic thin-film solar cell. The absorption enhancements of silicon layer in silicon solar cells with three kinds of Ag nanoparticles including sphere, cylinder and cuboid are studied by the finite difference time domain (FDTD) method, respectively. The results show that the light absorption of silicon is significantly improved due to the localized surface plasmon (LSP) reso- nance. The relations of the absorption enhancement with the parameters of nanoparticles are thoroughly analyzed. The optimal absorption enhancement can be achieved by adjusting the relevant parameters. Among the three types of Ag nanoparticles, i.e., sphere, cylinder and cuboid, the silicon with the cubical Ag nanopaticles shows the most efficient absorption enhancement at optimal conditions, its maximum absorption enhancement factor is 1.35, and that with the spherical Ag nanopaticles gets the lowest absorption enhancement. The work is useful for the further theoretical study and design for the plasmonic thin-film solar cell.
出处 《Optoelectronics Letters》 EI 2013年第6期405-409,共5页 光电子快报(英文版)
基金 supported by the International Scientific and Technological Cooperation Projects of Guizhou Province in China(No.[2011]7035)
  • 相关文献

参考文献18

  • 1Rui Xu, Xiaodong Wang, Liang Song, Wen Liu, An Ji, Fuhua Yang and Jinmin Li, Opt. Express 20, 5061 (2012).
  • 2F. Cortos-Juan, C. Chaverri Ramos, J. P. Connolly, C. David, F. J. Garcia de Abajo, J. Hurtado, V. D. Mihailetchi, S. Ponce-Alcfintara and GuiUermo Sunchez, Journal of Re- newable and Sustainable Energy 5, 033116 (2013).
  • 3DING Guo-jing, QIN Wen-jing, YANG Li-ying, HUANG Kang and YIN Shou-gen, Journal of Optoelectron- its-Laser 23, 1786 (2012). (in Chinese).
  • 4M. Y. Kuo, J. Y. Hsing, T. T. Chiu, C. N. Li, W. T. Kuo, T. S. Lay and M. H. Shih, Opt. Express 20, A828 (2012).
  • 5Chuanhao Li, Liangping Xia, Hongtao Gao, Ruiying Shi, Chen Sun, Haofei Shi and Chunlei Du, Opt. Ex- press 20, A589 (2012).
  • 6Ping-Chen Tseng, Min-An Tsai, Peichen Yu and Hao- Chung Kuo, Progress in Photovoltaics: Research and Applications 20, 135 (2012).
  • 7Vladislav Jovanov, Ujwol Palanchoke, Philipp Magnus, Helmut Stiebig, Jiirgen Hupkes, Porponth Sichanugrist, Makoto Konagai, Samuel Wiesendanger, Carsten Rockstuhl and Dietmar Knipp, Opt. Express 21, A595 (2013).
  • 8L1N Xiao-yuan, HUANG Qian, ZHANG De-kun, MU Cun, ZHAO Ying, ZHANG Cun-shan and ZHANG Xiao-dan, Journal of Optoelectronics.Laser 24, 523 (2012). (in Chinese).
  • 9Wiesendanger S., Zilk M., Pertsch T., Rockstuhl C. and Lederer F., Opt. Express 21, A450 (2013).
  • 10Song B. S., Yamada S., Asano T. and Noda S., Opt. Express 19, 11084 (2011).

同被引文献7

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部