期刊文献+

链式多Li掺杂分子H(HCN—Li)nH(n=1—6)的NLO性质及链长依赖性 被引量:1

NLO Property for the Multi Li-doped Chain Molecules H(HC==N—Li)_nH(n=1—6) and Dependence of Chain Length
下载PDF
导出
摘要 对链式多Li掺杂体系H(HC==N-Li)。H(n=1~6)的结构与性质进行了研究.发现随着链长n的增大,体系中有两类分子出现.当n=1,2时,由于额外电子轨道是空的,从而形成了Li盐分子;而当n=3~6时,额外电子轨道是占据的,从而形成了具有大范围额外电子云的多Li电子化物分子.对于系列体系H(HC—N—Li)。H(n=1—6),其非线性光学(NLO)性质的依赖性呈现阶梯式增长的规律,即静态第一超极化率风的次序为2179,2776(n=1,2)〈5492,5487(n=3,4)〈15235,15377(n=5,6),表明增加Li原子掺杂数是提高NLO响应的新途径. The alkali-metal doped system with excess electron is a new kind of potential materials having large non-linear optical( NLO) response. The structures and properties of the multi Li-doped chain molecules H( HC N—Li)n H( n = 1—6) were reported in this paper. Interestingly,with the increasing of chain length n,two kinds of molecules emerge. For n = 1 and 2,the Li-salt molecules are formed because the excess electron orbitals are unoccupied. But for n = 3—6,excess electron orbitals are occupied and multi-Li electrides with wide-range excess electron cloud are formed. For the multi Li-doped chain system,the dependence on NLO properties is unordinary stepped increase,2179,2776( n = 1,2) < 5492,5487( n = 3,4) < 15235,15377( n= 5,6). It demonstrates that multi-Li doping can generate wide-range excess electron cloud and large NLO response. The new knowledge enriches the design ideas for NLO materials.
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2013年第11期2546-2550,共5页 Chemical Journal of Chinese Universities
基金 国家自然科学基金(批准号:21173098 21173095 21303066)资助
关键词 掺杂效应 电子化物 超极化率 链长依赖性 Doping effect Electride Hyperpolarizability Chain length dependence
  • 相关文献

参考文献26

  • 1ChenW., LiZ. R., WuD., LiY., SunC. C., GuF. L., J. Am. Chem. Soe. ,2005, 127(31), 10977-10981.
  • 2ChenW. , LiZ. R. , Wu D. , LiY. , SunC. C. , Gu F. L. , AokiY. , J. Am. Chem. Soc., 2006, 128(4), 1072-1073.
  • 3Xu H. L., LiZ. R., WuD., WangB. Q., LiY., GuF. L., AokiY., J. Am. Chem. Soc. ,2007, 129(10), 2967-2970.
  • 4Dye J. L., Inorg. Chem. , 1997, 36(18), 3816-3826.
  • 5Iehimura A. S. , Dye J. L. , Camblor M. A. , Villaeseusa L. A. , J. Am. Chem. Soe. , 2002, 124(7) , 1170-1171.
  • 6LiuZ. B., ZhouZ. J., LiY., LiZ. R., WangR., LiQ. Z., LiY., JiaF. Y., WangY. F., LiZ. J., ChengJ. B., SunC. C., PhysChemChemPhys , 2010, 12 (35), 10562-10568.
  • 7LiuZ. B., ZhouZ. J., LiZ. R., LiQ. Z., JiaF. Y., ChengJ. B., SunC. C., J. Mater. Chem. ,2011,21(24), 8905-8910.
  • 8Zhou Z. J., LiX. P., MaF., LiuZ. B., LiZ. R., Huang X. R., SunC. C., Chem. Ear. J. , 2011, 17(8), 2414-2419.
  • 9ChenW. , LiZ. R. ,WuD., LiR. Y. , Sun C. C. , J. Phys. Chem. B, 2005, 109(1), 601-608.
  • 10JingY. Q., LiZ. R., WuD., LiY., WangB. Q., GuF. L., J. Phys. Chem. B,2006, 110(24), 11725-11729.

二级参考文献55

  • 1Marder S. R. , Cheng L. T. , Tiemann B. G. , Friedii A. C. , Blanchard-Desce M. , Perry J. W. , Skindhoj J.. Science[J] , 1994, 63: 511-514.
  • 2Kirtman B, , Champagne B. , Bishop D. M.. J. Am. Chem. Soc. [J] , 2000, 122:8007-8012.
  • 3ChenW., LiZ. R., LiY., SunC. C., GuF. L., AokiY.. J. Am. Chem. Soc.[J],2006, 128:1072-1073.
  • 4Nakano M. , Ohta S. , Kamada K. , Kishi R. , Kubo T. , Kamada K. , Ohta K. , Champagne B. , Botek E. , Takahashi H.. Chem. Phys. Lett. [J], 2007, 443:95-101.
  • 5XuH. L., LiZ. R., WuD., WangB. Q., LiY., GuF. L., AokiY.. J. Am. Chem. Soc.[J],2007, 129:2967-2970.
  • 6Yang G. C., Si Y. L., Su Z. M.. J. Phys. Chem. A[J], 2011, 115:13356-13363.
  • 7Lacroix P. G.. Eur. J. lnorg. Chem. [J], 2001,33:9-348.
  • 8Kanis D. R. ,Ratner M. A. , Marks T.. J. Chem. Rev. [J] , 1994, 94:195-242.
  • 9Coe B. J. , Jones L. A. , Brunsehwig B. S. , Asselberghs I. , Clays K. , Persoons A.. J. Am. Chem. Soc. [J] , 2003, 125:862-863.
  • 10Coe B. J. , Foxon S. P. , Harper E. C. , Raftery J. , Shaw R. , Swanson C. A. , Asselberghs I. , Clays K. , Brunschwig B. S. , Fitch A. G.. Inorg. Chem. Phys. [J], 2009, 48:1370-1379.

共引文献4

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部