期刊文献+

含末端炔基的Salen型金属配合物的合成、表征及性质 被引量:4

Synthesis,Characterization and Properties of Terminal Alkynylate Modified Salen-Type Complexes
下载PDF
导出
摘要 设计合成了新型含有末端炔基的Salen型配体H2Ln及其系列金属配合物MLn(n=1,2;M=Ni,Cu,Mn),并用氢核磁共振(1H NHR)谱、电喷雾质谱(ESI-MS)、元素分析(EA)、傅里叶变换红外(FT-IR)光谱和紫外-可见(UV-Vis)光谱等对各目标化合物进行了表征.采用循环伏安法研究了配体及其金属配合物的电化学氧化还原性质.研究发现,配体除H2L1外均在测试范围内出现特征的亚胺氧化还原峰.镍和铜的配合物均经历了两个单电子的氧化还原过程;锰的配合物均出现由Mn(III)/Mn(II)产生的一对氧化还原峰,该过程为准可逆的单电子过程.H2Ln及MLn的溶液摩尔电导率数据显示,各目标化合物为弱电解质,具有一定的导电性. We synthesized two terminal alkynyl modified Salen ligands, H2L~, and their metal complexes, MLn (n=1, 2, M=Ni, Cu, Mn). The ligands and complexes were characterized by 1H nuclear magnetic resonance (IH NMR) spectroscopy, electrospray ionization mass spectrometry (ESI-MS), elemental analysis, Fourier transform infrared (FT-IR) spectroscopy, and ultraviolet visible (UV-Vis) spectroscopy. The redox properties of the compounds were investigated with cyclic voltammetry (CV). Imine redox peaks appeared in the CV curves of all the ligands except H2L1. The Ni and Cu complexes underwent two single electron redox processes in the scanning range. Mn complexes gave a pair of quasi-reversible voltammetric peaks, which corresponded to the redox process between Mn(lll)/Mn(ll). Molar conductivity measurements of the complexes showed that they were all weak electrolytes with certain conductivity.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2013年第11期2300-2307,共8页 Acta Physico-Chimica Sinica
基金 国家自然科学基金(20671053)资助项目~~
关键词 Salen型配合物 末端炔基 合成与表征 谱学性质 循环伏安法 Salen-type complex Terminal alkynyl Synthesis and characterization Spectrum property Cyclicvoltammetry
  • 相关文献

参考文献32

  • 1Nasr-Esfahani, M.; Moghadam, M.; Valipour, G. Synth. Commun. 2009, 39, 3867.
  • 2Voronova, K.; Purgel, M.; Udvardy, A.; B6nyei, A. C.; Kath6, ,k.; Jo6, F. Organometals 2013, 32 (15), 4391.
  • 3Cheng, J. H.; Wei, K. Y.; Ma, X. F.; Zhou, X. G.; Xiang, H F. J. Phys. Chem. C 2013, 117 (32), 16552.
  • 4Tong, J.; Zhang, Y.; Li, Z.; Xia, C. J. Mol. Catal. A." Chem. 2006, 249, 47. doi: 10.1016/j.molcata.2005.12.031.
  • 5Salavati-Niasari, M.; Davar, F.; Bazarganipour, M. Dalton Trans. 2010, 39, 7330. doi: 10.1039/b923416k.
  • 6Lee, S. H.; Xu, L.; Park, B. K.; Mironov, Y. V.; Kim, S. H.; Song, Y. J.; Kim, C.; Kim, Y.; Kim, S. K. Chem. -Eur. ,1. 2010, 16, 4678. doi: 10.1002/chem.vl6:15.
  • 7Vagin, S. I.; Reichardt, R.; Klaus, S.; Rieger, B. J. Am. Chem. Soc. 2010, 132, 14367. doi: 10.1021/ja106484t.
  • 8Zintl, M.; Molnar, F.; Urban, T.; Bernhart, V.; Preishuber-Puegl, P.; Rieger, B.Angew. Chem. Int. Edit. 2008, 47, 3458.
  • 9Deeortes, A.; Kleij, A. W. ChemCatChem 2011, 3, 831. doi: 10.1002/cetc.v3.5.
  • 10Boogaerts, I. I. F.; Nolan, S. P. J. Am. Chem. Soc. 2010, 132, 8858. doi: 10.1021/ja103429q.

同被引文献120

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部