期刊文献+

GEP算法解码结构复用研究 被引量:2

Study on reutilization of GEP algorithm decoding structure
下载PDF
导出
摘要 适应度评价大体可以分成解码和计算适应度值两个部分,是进化计算中运算量最大、重复率最高的过程之一。为了有效利用已有计算结果的角度避免大量重复建树和遍历运算,改进了GEP解码算法基本流程以降低GEP的运算量,达到了提升运算效率的目的。采用仿真的方式对引入复用机制的GEP和传统GEP算法进行了对比实验,从解码次数、解码所用时间等两个方面进行对照,发现引入复用机制的GEP算法在解码次数上比传统GEP有多个数量级的优势,在解码所需时间上也有较大的改进。 Fitness evaluation can be generally divided into two parts:decoding and calculating the fitness value. It concludes the largest operation amount and the highest repetition rate in evolutionary computation. From the perspective of the effective utilization of the acquired calculation results to avoid repetitive builds and traversal operation, this paper achieved the goal of reducing the GEP computation and enhancing operation efficiency by improving the basic flow of GEP decoding algorithm. At last, according to simulation method, it conducted a comparative experiment between the GEP algorithm which introduced the reuse mechanism and the original one. The comparison mainly focused on respective decoding times and time. It discovered that via introducing the reuse mechanism into GEP algorithm, the algorithm could significantly reduce the decoding times by several orders of magnitude and save the decoding time to some extent than the original one.
作者 王超 何锫
出处 《计算机应用研究》 CSCD 北大核心 2013年第11期3244-3247,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(61170199) 湖南省教育厅重点资助科研项目(11A004) 湖南省研究生科研创新项目(CX2012B367)
关键词 基因表达式程序设计 解码 基因型结构 复用 gene expression Programming(GEP) decoding genotype structure reutilization
  • 相关文献

参考文献19

  • 1FERREIRA C. Gene expression programming in problem solving [ C ]//ROY R, KOPPEN M, OVASKA S. Soft Computing and In- dustry: Recent Applications, [ S. 1. ] : Springer-Verlag, 2002: 535- 654.
  • 2饶元,元昌安.基于模拟退火的基因改进型GEP算法[J].四川大学学报(自然科学版),2008,45(4):767-772. 被引量:7
  • 3陈安升,蔡之华,谷琼,张烈超.一种新型的GEP算法及应用研究[J].计算机应用研究,2007,24(6):98-100. 被引量:9
  • 4KOZA J R, KEANE M A, YU J,et al. Automatic creation of human- competitive programs and controllers by means of genetic programming [ J]. Genetic Programming and Evolvable Machines,2000,1 ( 1- 2) :121-164.
  • 5杜欣,李悦乔,谢大同,康立山.基因评估基因表达式程序设计方法[J].小型微型计算机系统,2007,28(5):834-840. 被引量:9
  • 6王晓,何锫.一种新型GEP解码方法[J].计算机工程与应用,2012,48(3):43-45. 被引量:3
  • 7FERREIRA C. Gene expression programming: a new adaptive algo- rithm for solving problems [ J ]. Complex Systems, 2001,13 ( 2 ) : 87-129.
  • 8杜欣,丁立新.一类基因表达式程序设计的收敛速度[J].中国科学:信息科学,2010,40(1):41-53. 被引量:7
  • 9KOZA J. Genetic programming [ M ]. ILcambridge, MA : MTT Press, 1994.
  • 10ZUO Jie, TANG Chang-jie, ZHANG Tian-qing. Mining predicate asso- ciation rule by gene expression programming [ C ]//Proc of Interna- tional Conference for Web Information Age. Berlin : Springer, 2002 : 92-103.

二级参考文献101

共引文献99

同被引文献30

  • 1姜大志,吴志健,康立山,汤铭端,李康顺.基因表达式程序设计的GRCM方法[J].系统仿真学报,2006,18(6):1466-1468. 被引量:25
  • 2陈安升,蔡之华,谷琼,张烈超.一种新型的GEP算法及应用研究[J].计算机应用研究,2007,24(6):98-100. 被引量:9
  • 3Ferreira C. Gene expression programming: a new adaptive algo- rithmfor solving problems [ J ]. Complex Systems, 2001,13 ( 2 ) : 87-129.
  • 4Ferreira C. Gene expression programming[ M ]. Portugal : Angorado Heroismo, 2002.
  • 5Azamathulla, Robert. Use of gene-expression programming to esti- mate manning' s roughness coefficient for high gradient streams [ J].Water Resources Management,2013,27 ( 3 ) :715-729.
  • 6Ozlem Terzi. Daily pan evaporation estimation using gene expres- sionprogramming and adaptive neural-based fuzzy inference system [ J ]. Neural Computing& Applications, 2013,23 ( 3 ) : 1035 -1044.
  • 7Su Ke, Kong Sheng-li. Product material combination imageMethod based on GEP[ C]. The 19th International Conference on Industrial Engineering and Engineering Management,2013:235-243.
  • 8Hosseini, Gandomi. Short-term load forecasting of power systems by gene expressionprogramming [ J ]. Neural Computing & Applic- tions,2012,21 (2) :377-389.
  • 9Nie Li, Gao Liang, Li Pei-gen, et al. A GEP-based reactive schedu- ling policies constructing approachfor dynamic flexible job shop scheduling problem with job releasedates [ J]. Journal of Intelligent Manufacturing,2013,24(4) :763-774.
  • 10Amir Hossein Gandomi, Amir HosseinAlavi, Ting T O, et al. Intel- ligent modeling and prediction of elastic modulusof concrete strength via gene expression programming [ C]. International Con- ference on Swarm Intelligence,2013:564-571.

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部