期刊文献+

一种基于文法演化自动拟合非线性数据的蜂群算法

Grammatical evolution based nonlinear data automatic fitting bee colony algorithm
下载PDF
导出
摘要 将文法演化方法引入蜂群算法,基于上下文文法定义多种数学函数,提出了自动拟合非线性数据的蜂群算法BCGE,并给出了通过基因截断、基因增补及利用领域知识加速BCGE的方法。基于文法演化的BCGE比基于文法规划的其他算法更为简洁,且存储基因型所需的空间也远比其他算法存储语法树所需的空间少。通过五个测试函数的实验表明,BCGE能够有效地拟合非常复杂的非线性数据。 This paper introduced grammatical evolution into bee colony algorithm, and proposed a new nonlinear data automa-tic fitting bee colony algorithm BCGE, which was based on multiple functions defined in context free grammar, and presented speedup method for BCGE by using gene truncation and supplement and utilizing domain knowledge. This grammatical evolution based BCGE was much more concise than the genetic planning based algorithms, and it needed far less memory for storing genotypes than the genetic planning based algorithms do for storing syntax trees. The experimental results on 5 test functions indicate that BCGE can effectively fit very complicated nonlinear data.
作者 陈剑 马光志
出处 《计算机应用研究》 CSCD 北大核心 2013年第11期3257-3260,共4页 Application Research of Computers
基金 广东省科技计划资助项目(2010B060100056)
关键词 文法演化 蜂群算法 非线性拟合 上下文文法 grammatical evolution(GE) bee colony algorithm nonlinear fitting context free grammar
  • 相关文献

参考文献11

  • 1LIM J H, YUN H I. Comparison of linear and non-linear equation for the calibration of roxithromyein analysis using liquid chromatography/ mass spectrometry [ J ] Korean Journal of Veterinary Research, 2010,50 ( 1 ) : 11-17.
  • 2CHEN Yue-hui, ABRAHAM A. Tree,structure based hybrid compu- tational intelligence : theoretical foundations and applications [ C ]// Proc of Intelligent Systems Reference Library Series. Berlin : Springer- Verlag,2009:8-11.
  • 3RYAN C, COLLINS J J, O' NEILL M. Grammatical evolution: evol- ving programs for an airbitrary language [ C ]//Proc of the 1 st European Workshop on Genetic Programming. 1998:83-96.
  • 4O' NEILLM ; RYAN C, Grammatical evolution by grammatical evolu- tion : the evolution of grammar and genetic code[ C ]//Proc of the 7th European Conference on Genetic Programming. 2004 : 138-149.
  • 5MATOUSEK R. Grammatical evolution : STE criterion in symbolic re- gression task [ C ]//Proc of World Congress on Engineering and Com- puter Science. 2009 : 1050-1054.
  • 6SUGIURA H, MIZUNO T, KITA E. Santa fe trail problem solution using grammatical evolution [ C ]//Proc of International Conference on Industrial and Intelligent Information. 2012 : 36 - 40.
  • 7AMARTEIFIO S, O' NEILL M. An evolutionary approach to complex system regulation using grammatical evolution [ C ]//Proc of the 9th International Conference on the Simulation and Synthesis of Living Systems. Boston : MIT Press ,2004:551-556.
  • 8GoMEZ N, MINGO L F,BOBADILLA J, et al. Particle swarm opti- mization iaodels applied to neural networks using the R language[ J]. WSEAS Trans on Systems,2010,9(2) :192-202.
  • 9SCOWEN R S. Generic base standard[ C ]//Proc of Software Engi- neering Standards Symposium. 1993:25-34.
  • 10McCAFFREY J. Use bee colony algorithms to solve impossible prob- lems [ EB/OL]. http://msdn, microsoft, com/en-us/magazine/ gg983491, aspx.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部