期刊文献+

基于Chebyshev多项式的椭圆曲线密码系统算法

Elliptic curve cryptosystem algorithm based on Chebyshev polynomial
下载PDF
导出
摘要 通过结合Chebyshev多项式与椭圆曲线,构造基于Chebyshev多项式的椭圆曲线密码系统算法。利用有限域上Chebyshev良好的半群特性和椭圆曲线上的性质,实现了在椭圆曲线上的加密算法。该算法具有混沌密码和椭圆曲线密码算法的优点。通过对该算法的分析,认为算法简单、安全性高、方案可行。 By combining Chebyshev polynomial with elliptic curve, this paper constructed an elliptic curve cryptosystem algorithm based on Chebyshev polynomial, and used the good semi-groop property of the limited domain Chebyshev and the properties of the elliptic curve. It realized cryptosystem algorithm in the elliptic curve. The algorithm has the advantages of the chaotic cipher and elliptic curve cryptographic algorithm. Through the analysis of the algorithm, it is thought that the algorithm is simple and has high safety, the scheme is feasible.
出处 《计算机应用研究》 CSCD 北大核心 2013年第11期3388-3389,3413,共3页 Application Research of Computers
基金 国家自然科学基金资助项目(61170037) 中央高校基本科研业务费专项资金资助项目(YZDJ1201 XKJS-2012LIZH)
关键词 CHEBYSHEV多项式 椭圆曲线密码算法 混沌密码 半群特性 Chebyshev polynomial elliptic curve cryptosystem algorithm chaotic cipher semi-group property
  • 相关文献

参考文献10

  • 1KOCAREV L, TASEV Z. Public-key encryption based on Chebyshev maps [ C ]//Proc of International Symposium on Circuits and Systems. 2003:28-31.
  • 2KOCAREV L, STERJEV M, FEKETE A,et aL Public-key eneryption with chaos [ J ]. Chaos,2004,3 4 (4) : 1078-1082.
  • 3BERGAMO P, D' AROC P, De SANTIS A, et al. Security of public key cryptosystems based on Chebyshev polynomials [ J]. IEEE Trans on Circuits and Systems I : Regular Papers,2005,52 (7) : 1382- 1393.
  • 4ZHAO Geng, LU Fang-fang. Security of several public key algorithms chaos-based proposed recently [ C ]//Proc of International Conference on Communication. [ S. 1. ] : IEEE Press,2006 : 1573-1576.
  • 5刘亮,刘云,宁红宙.公钥体系中Chebyshev多项式的改进[J].北京交通大学学报,2005,29(5):56-59. 被引量:11
  • 6FOROUZAN B A.密码学与网络安全[M].马振晗,贾军保,译.北京:清华大学出版社,2009:146-173.
  • 7赵耿,闫慧,童宗科.基于Chebyshev多项式的公钥密码系统算法[J].计算机工程,2008,34(24):137-139. 被引量:7
  • 8KOHDA T, FUJISAKI H. Jacobian elliptic Chebyshev rational maps [ J ]. Physical D: Nonlinear Phenomena, 2001,148 ( 3- 4 ) : 242- 254.
  • 9WANG Da-hu, HU Zhi-guo, TONG Zao-jing, et al. An identity authen- tication system based on Chebyshev polynomials[ C ]//Proe of the 1 st International Conference on Information Science and Engineering. 2009 : 1648-1650.
  • 10STINSONDR.密码学原理与实践[M].冯登国,等译.北京:电子工业出版社,2011:201-202.

二级参考文献12

  • 1王大虎,魏学业,柳艳红.Chebyshev多项式的公钥加密和身份认证方案的研究[J].北京交通大学学报,2005,29(5):40-42. 被引量:5
  • 2刘亮,刘云,宁红宙.公钥体系中Chebyshev多项式的改进[J].北京交通大学学报,2005,29(5):56-59. 被引量:11
  • 3王大虎,魏学业,李庆九,柳艳红.基于Chebyshev多项式的公钥加密和密钥交换方案的改进[J].铁道学报,2006,28(5):95-98. 被引量:3
  • 4Kocarev L, Makraduli J, Amato E Public-key Encryption Based on Chebyshev Maps[C]//Proceedings of the International Symposium on Circuits and Systems. [S. l.]: IEEE Press, 2003.
  • 5Kocarev L, Sterjev M, Fekete A, et al. Public-key Encryption with Chaos[J]. Chaos, 2004, 14(4): 1078-1082.
  • 6Bergamo P, D'Aroc P, De Santis A, et al. Security of Public Key Cryptosystems Based on Chebyshev Polynomials[C]//Proceedings of the International Symposium on Circuits and Systems. [S. l.]: IEEE Press, 2005,
  • 7Zhao Geng, Chen Guanrong, Lu Fangfang. Analysis of Some Recently Proposed Chaos-based Public Key Encryption Algorithms[C]//Proc. of 2006 International Conference on Communicationsl Circuits and Systems. [S. l.]: IEEE Press, 2006.
  • 8Kocarev L, Tasev Z. Public-Key Encryption Based on Chebyshev Maps[A]. Proceedings of the 2003 IEEE International Symposium on Circuits and Systems, Volume 3[C]. New York. IEEE, 2003.28- 31.
  • 9Pina Bergamo, Paolo D' Arco, Alfredo De Santis, et al. Security of Public Key Cryptosysterns based on Chebyshev Polynomials[EB/OL]. http://citebase, eprints, org, 2004-8-25.
  • 10G' erard Maze. Algebraic Methods for Constructing oneway Trapdoor Functions[D]. Notre Dame: University of Notre Dame, 2003.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部