期刊文献+

一种基于全部和局部平滑光流的分步人脸重建算法 被引量:2

Step by step 3D face reconstruction algorithm based on CLG optical flow
下载PDF
导出
摘要 提出一种基于全部和局部(combined local-global approach,CLG)平滑光流的分步人脸重构算法。首先利用原始CLG得到图像初始匹配值;再以反投影残差、光流梯度、人脸光流范围进行约束,找出初始匹配中不可信匹配区域;最后对不可信图像区域提取纹理并再次计算光流值。实验表明,该人脸重建算法的重建精度与鲁棒性比原始CLG算法高,能够得到光顺的人脸三维数据。 This paper proposed a step by step 3D face reconstruction algorithm based on CLG optical flow. First, it accomplished original image matching points using CLG algorithm. Then, it found uncertainty matching areas in original matching points automatically based on the constraint of reprojected error, optical flow gradient and face optical flow range. Last, it recomputed the optical flow value of uncertainty matching areas with the texture part of face images as input images. Real experimental results show that both the reconstruction accuracy and robustness with algorithm in this paper are better than with the original CLG algorithm. Smooth and vivid 3D face data can be got with the proposed algorithm.
出处 《计算机应用研究》 CSCD 北大核心 2013年第11期3480-3482,3491,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(51275431) 云南省教育厅科学研究基金资助项目(2013Y257) 四川省科技支撑计划资助项目(2012GZ0102)
关键词 人脸重建 全部和局部平滑光流 光流梯度 不可信匹配区域 face reconstruction combined local-global approach optical flow optical flow gradient uncertainty matching areas
  • 相关文献

参考文献10

  • 1丁宾,王阳生,杨明浩,姚健.从多张非标定图像重建三维人脸[J].计算机辅助设计与图形学学报,2010,22(2):210-215. 被引量:5
  • 2FURUKAWA Y,PONCE J. Accurate, dense, and robust multi-view stereopsis[ J]. IEEE Trans on Pattern Analysis and Machine In- telligence,2010,32 (8) :1362-1376,.
  • 3ZHANG L, SNAVELY N, CURLESS B, et al. Spaeefime faces: h!gh resolution capture for modeling and animation [ J ]. ACM Trans on Graphics,2004,23 (3) :548-558.
  • 4BRADLEY D, HEIFRICH W, POPA T. High resolution passive facial performance capture [ J ]. ACM Trans on Graphic, 2010,29 (4) : 1 - 10.
  • 5DRULEA M, NEDEVSCHI S. Total variation regularization of local- global optical flow[ C ]//Proc of IEEE International Conference on In- telligent Transportation Systems. 2011:318- 323.
  • 6WEDEL A, POCK T,ZACH C,et al. An improved algorithm for TV-L1 optical flow [ M ]//CREMERS D" Visual Motion Analysis. Berlin: Springer-Verlag, 2009)23- 45.
  • 7ZHANG Zheng-you. A flexible new technique for camera calibration [ J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2000,22(11):1330-1334.
  • 8袁建英,刘甲甲,王凯,李柏林.一种非定标图像高精度三维重建算法[J].计算机应用研究,2012,29(12):4786-4788. 被引量:3
  • 9CHAMBOLLE A. Total variation minimization and a class of binary MRF models [ C ]//Proc of the 5th International Conference on Ener- gy Minimization Methods in Computer Vision and Pattern Recognition. 2005 : 136-152.
  • 10MEYER Y. Oscillating patterns in image processing and nonlinear evo- lution equations:The Fifteenth Deam Jacqueline B. Lewis Memorial Lectures [ M ]. Boston - American Mathematical Society,2001 : 104 -126.

二级参考文献9

  • 1李海峰,傅侃,周文晖,曾虹.视觉导航机器人三维场景重建研究[J].杭州电子科技大学学报(自然科学版),2010,30(2):49-52. 被引量:1
  • 2彭翔,高鹏东,刘晓利,刘则毅.真实感人脸模型的细分曲面重建[J].计算机辅助设计与图形学学报,2006,18(5):742-747. 被引量:5
  • 3Parke F I. Computer generated animation of faces [C] //Proceedings of the ACM Annual Conference, Boston, 1972: 451-457.
  • 4Pighin F, Szeliski R, Salesin D H. Modeling and animating realistic faces from images[J]. International Journal of Computer Vision, 2002, 50(2): 143-169.
  • 5Blanz V, Vetter T. A morphable model for the synthesis of 3D faces [C] //Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, Los Angeles, 1999: 187-194.
  • 6Blanz V, Vetter T. Face recognition based on fitting a 3D morphable model [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25( 9): 1063-1074.
  • 7Ahlberg J. Real-time facial feature tracking using an active model with fast image warping [C] //Proceedings of the International Workshop on Very Low Bitrate Video, Athens, 2001:39-43.
  • 8Dornaika F, Davoine F. On appearance based face and facial action tracking [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2006, 16(9): 1107-1124.
  • 9朱俊樵,梁栋,程志友.一种多视图分层重构算法研究[J].模式识别与人工智能,2003,16(4):407-411. 被引量:2

共引文献6

同被引文献17

  • 1唐丽,吴成柯,刘侍刚,颜尧平.基于区域增长的立体像对稠密匹配算法[J].计算机学报,2004,27(7):936-943. 被引量:27
  • 2HAN Bing, PAULSON C, WU Da-peng.3D dense reconstruction from 2D video sequence via 3D geometric segmentation[J].Journal of Visual Communication and Image Representation,2011,22(5):421-431.
  • 3TANG Li, WU Cheng-ke, CHEN Ze-zhi.Image dense matching based on region growth with adaptive window[J].Pattern Recognition Letters,2002,23(10):1169-1178.
  • 4LHUILLIER M, QUAN L.Quasi-dense reconstruction from image sequence[C]//Proc of the 7th Europe Conference on Computer Vision.Berlin:Springer,2002:125-139.
  • 5VESE L, OSHER S.Modeling textures with total variation minimization and oscillating patterns in image processing[J].Journal of Scientific Computing,2003,19(1-3):553-572.
  • 6LOWE D G.Distinctive image features from scale-invariant key points[J].International Journal of Computer Vision,2004,60(2):91-110.
  • 7ZHANG Z, DERICHE R, FAUGERAS O, et al.A robust technique for matching two uncalibrated images through the recovery of the unknown epipolar geometry[J].Artificial Intelligence,1995,78(1-2):87-119.
  • 8王崴,唐一平,任娟莉,时冰川,李培林,韩华亭.一种改进的Harris角点提取算法[J].光学精密工程,2008,16(10):1995-2001. 被引量:104
  • 9戴斌,方宇强,孙振平,王亮.基于光流技术的运动目标检测和跟踪方法研究[J].科技导报,2009,27(12):55-60. 被引量:11
  • 10蒋晓瑜,姚军,宋小杉,汪熙.基于局部光流约束的角点匹配算法[J].光学技术,2010,36(2):229-234. 被引量:7

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部