期刊文献+

基于极坐标和蒙特卡罗估计的超声图像去噪方法 被引量:2

Ultrasound image despeckling using polar coordinate system and Monte Carlo approach
下载PDF
导出
摘要 针对超声图像采集特性和斑点噪声分布特点,提出极坐标系下融合蒙特卡罗估计的斑点噪声抑制方法。首先对极坐标系下含噪图像进行对数变换,然后再与估计点相关的任意径向方向进行全局域采样,根据样本点与估计点空间相关性和斑点噪声分布模型构造权重因子,最后利用蒙特卡罗方法实现斑点噪声似然加权估计。实验结果表明,该算法在滤除斑点噪声的同时,更好地保持了图像细节信息。 In view of the characteristics of ultrasound image acquisition and speckle noise statistics, this paper proposes an despeckling algorithm based on polar coordinate system and Monte Carlo estimation scheme. Firstly, it took logarithmic transformation to noisy images in polar coordinate system. Then, it acquired a set of samples in any radial direction with the estimated point in global spatial domain, and constructed weighting factor according to speckle noise model and the spatial correlation between sample point and estimated point. Consequently, the algorithmused the Monte Carlo method to achieve speckle noise likelihood-weighted estimate. Experimental results demonstrate that, the presented algorithm can better remove speckle noise while preserving image structures and details.
出处 《计算机应用研究》 CSCD 北大核心 2013年第11期3503-3505,3513,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(61202044)
关键词 超声图像 斑点噪声 极坐标系 蒙特卡罗 ultrasound image speckle noise polar coordinate system Monte Carlo
  • 相关文献

参考文献18

  • 1TAY P C,GARSON C D,ACTON S T,et al. Uhrasound despeekling for contrast enhancement [ J ]. IEEE Yrans on Image Processing, 2010,19(7 ) : 1847-1860.
  • 2WONG A,MISHRA A, FIEGUTH P, et al. An adaptive Monte Cmlo approach to nonlinear image denoising [ C ]//Proc of International Contorence on Pattern Recognition. 2008 : 1-4.
  • 3JUANG P A , WU Ming-ni. Uhrasound speckle image process using wiener pseudo-inverse filtering[ C ]//Proc of the 33rd Annud Confer- enceon Industrial Electronics Society . 2007:2446-2449.
  • 4VOSOUGH1 A,SHAMSOLLAHI M B. Speckle noise reduction of ul- trasound images using M-band wavelet transform and wiener filter in a Homomorphic framework [ C ]//Proe of Intenational Conferenon Bio- Medical Engineering and lnformaties. WashingtonDC:IEEE Computer Society,2008:510-515.
  • 5GOOSSENS B, PIZURICA A,PHILIPS W. Image denoising using mix- tures of projected Gaussian sclle mixtures[ J]. IEEE Trans on Im- age Processing, 2009,18 ( 8 ) : 1689-1702.
  • 6LOUPAS T, MCDICKEN W N, ALLAN P L. An adaptive weighted median filter for speckle suppression in medical ultrasonic images[ J]. IEEE Trans on Circuits and Systems, 1989,36( 1 ) : 129-135.
  • 7YU Yong-Jian, ACTON S T. Speckle reducing anisotropic diffusion [J]. IEEE Trans on Image Processing, 2002,11 ( 11 ): 1260- 1270.
  • 8KRISSIAN K,WESTIN C F, KIKINIS R,et ul. Oriented speckle re- ducing anisotropic diffusion [ J]. IEEE Trans on Image Process- ing,2007,16(5 ) : 1412- 1424.
  • 9ZHANG W G,ZHANG Q,YANG C S. hnproved bilateral filtering tor SAR image despeckling [ J ]. Electronics Letters,2011,47 ( 4 ) : 286- 288.
  • 10MAHMOUDI M ,SAPIRO G. Fast inmge and video denoising via non- local means of sinlilar neighborhoods [ J ]. IEEE Signal Processing Letters,2005,12(12) :839-842.

二级参考文献12

  • 1SALINAS H M, FERNANDEZ D C. Comparison of PDE- based nonlinear diffusion approaches for image enhancement and denoising in optical coherence tomography [ J ]. IEEE Trans on Medical Imaging, 2007, 26(6) : 761-771.
  • 2TAY, P C, GARSON C D, ACTON S T, et al, Ultrasound despeckling for contrast enhancement [ J ]. IEEE Trans on Image Processing, 2010, 19(7) : 1847-1860.
  • 3RABBANI H, VAFADUST M, ABOLMAESUMI P, et al. Speckle noise reduction of medical ultrasound images in com- plex wavelet domain using mixture priors [J]. IEEE Trans on Biomedical Engineering, 2008, 55(9) : 2152-2160.
  • 4PERONA P, MALIK J. Scale-space and edge detection u- sing anisotropic diffusion [ J]. IEEE Trans on Pattern Anal- ysis and Machine Intelligence, 1990, 12(7) : 629-639.
  • 5CATYE T, LIONS P, MOREL J, et al. Image selective smoothing and edge detection by nonlinear diffusion [ J ]. SIAM J Numerical Anal, 1992, 29 : 182-193.
  • 6YU Y, ACTON S. Speckle [ J]. IEEE Trans on Image 1260-1270. reducing anisotropic diffusion Processing, 2002, 11 (IX):.
  • 7I VOCI F, E1HO S, SUGIMOTO N, et al. Estimating the gradient threshold in the Perona-Malik equation [ J ]. IEEE Signal Processing Magazine, 2004, 21 (3):39-46, 65.
  • 8LING J, BOVIK A C. Smoothing low-SNR molecular images via anisotropic median-diffusion [J]. IEEE Trans on Medi- cal Image, 2002, 21 (4) : 377-384.
  • 9BLACK M J, SAPIRO G, MARIMONT D H, et al. Robust anisotropic diffusion [ J ]. IEEE Trans on Image Processing, 1998, 7(3) :421-.432.
  • 10CZERWINSKI R N, JONES D L, WILLIAM D O. Ultra- sound speckle reduction by directional median filtering [ C ]//IEEE International Conference on Image Process- ing. Washington DC, USA, 1995:358-361.

共引文献13

同被引文献18

  • 1张博,张福勇,姜兴东.美国GE V730 Expert专家版彩色多普勒超声仪在临床中的应用及保养[J].医疗装备,2007,20(2):54-56. 被引量:3
  • 2Wong A, Mishra A, Fieguth P, et al. An adaptive Monte Carlo ap- proach to nonlinear image denoising[ C ]//Proc of International Con- ference on Pattern Recongnition. 2008 : 1-4.
  • 3Juang P A , Wu Mingni. Ultrasound speckle image process using wie- ner pseudo-inverse filter[ C]//Proc of the 33rd Annual Conference on Industrial Electronics Society. 2007:2446- 2449.
  • 4Perona P, Maljk J. Scale-space and edge detection using anisotropic diffusion[J]. IEEE Trans on Pattern Analysis and Machine In- tolling, 1990,12 (7) :629- 639.
  • 5Yu Y, Acton S T. Speck reduction anisotropic dissusion[ J]. IEEE Trans on Image Processing,2002,11 ( 11 ) :1260- 1270.
  • 6Voci F, Eiho S, Sugimoto N, et al. Estimating the gradient threshold in the Perona-Malik equation applications of senentation the Perona- Malik equation applications of segmentation [ J ]. [EEE Signal Pro- cessing Magazine,2004,5(4) :39-46.
  • 7KLEIN L A. A Boolean algebra approach to muhip]e sensor voting fu- sion [ J ]. I E E E Trans on Areospace Electronic Systems, 1993,29 (1) :317-327.
  • 8Soille P, Vogt P. Morohological segmentation of binary patterns [ J ]. Pattern Recognition Letters, 2009,30 ( 4 ) : 356 - 359.
  • 9刘芬,孙丰荣,耿俊卿,秦晓红,姚桂华,张运.一种基于各向异性扩散方程的医学超声图像降噪方法[J].山东大学学报(工学版),2009,39(5):38-42. 被引量:8
  • 10余锦华,汪源源.基于各向异性扩散的图像降噪算法综述[J].电子测量与仪器学报,2011,25(2):105-116. 被引量:50

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部