期刊文献+

基于BP神经网络的挖掘机液压系统故障诊断 被引量:3

Fault Diagnosis of Excavator Hydraulic System Based on BP Neural Network
下载PDF
导出
摘要 BP神经网络具有结构简单、工作状态稳定、易于硬件实现等优点,在模式识别及分类、系统仿真、故障智能诊断、图像处理、函数拟合、最优预测等方面具有很广泛的应用。液压系统是挖掘机很重要的组成部分。由于液压系统结构复杂,容易发生故障,一旦故障将会直接影响挖掘机的使用,因此对挖掘机液压系统的可靠性和可维护性具有很高的要求。针对上述问题,提出了基于BP神经网络的液压系统故障诊断方法。 BP neural network has the advantages of simple structure, stable working state, easy hardware implementation and so on. It has a wide range of applications in pattern recognition and classification, system simulation, fault intelligent diagnosis, image processing, function fitting, optimal prediction and so on. Hydraulic system is a very important part of excavator. Due to hydraulic system structure complex, prone to failure, and the failure will directly affect the use of the excavator, it has a very high request in the reliability and maintainability of excavator hydraulic system. According to the above problem, this paper presents a hydraulic system fault diagnosis method based on BP neural network.
出处 《煤矿机械》 北大核心 2013年第11期284-286,共3页 Coal Mine Machinery
关键词 BP神经网络 挖掘机 液压系统 故障诊断 BP neural network excavator hydraulic system fault diagnosis
  • 相关文献

参考文献4

二级参考文献14

  • 1罗小东,贾振红,王强.一种新的变步长LMS自适应滤波算法[J].电子学报,2006,34(6):1123-1126. 被引量:126
  • 2钟路,潘昊,封筠,等.模式识别[M].武汉:武汉大学出版社,2006.1-5.
  • 3Sheu Hsin - Teng and Chang Yuen - Haw. Robust Fault diagnosis for large - Scale Analog Circuit with Measurement Noises [J]. IEEE Transactions on circuit and systerm - Ⅰ: fundamental and applications. 1997,44 (3) : 198 - 209.
  • 4Raymond H K,Edward W J.A variable step size LMS algorithm[J].IEEE Trans on Signal Processing.1992,40:1633-1642.
  • 5LIU Xiangqun,Zhang Hongyue,LiuJun.Fauhdeteetion and diagnosis of permanent-magnetic DC motor based on parameter estimation and neural network[J].IEEE Transactions on lndustrial Eleetronics,2000,47(10):1021-l030.
  • 6雷天觉.液压工程手册[M].北京:北京理工大学出版社,1998..
  • 7杨士元.模拟系统的故障诊断与可靠性分析[M].北京:清华大学出版社,1993.
  • 8乔新勇,刘玮.基于ADALINE神经网络的自适应滤波方法[J].计算机工程与应用,2008,44(22):169-171. 被引量:4
  • 9耿妍,张端金.自适应滤波算法综述[J].信息与电子工程,2008,6(4):315-320. 被引量:33
  • 10He Yigang (Department of Electrical Engineering, Hunan University, Changsha 410082)Luo Xianjue Qiu Guanyuan(School of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710049).A NEURAL-BASED NONLINEAR L_1-NORM OPTIMIZATION ALGORITHM FOR DIAGNOSIS OF NETWORKS*[J].Journal of Electronics(China),1998,15(4):365-371. 被引量:8

共引文献28

同被引文献69

  • 1AN L,SEPEHRIN.Hydraulicactuatorcircuitfaultdetectionusingextended Kalmanfilter [C].Proceed-ingsoftheAmericanControlConference.Denver:ProcAm ControlConf,2003:4261.
  • 2MoubrayJ.Reliability-centered maintenance[M].Sec-ondedition.New York:IndustrialPressInc,1997.
  • 3WilliamsJH,DaviesA,DrakePR.Condition-basedmaintenanceand machine diagnostics [M].London:Chapman&Hall,1994.
  • 4BakerDSG.Plantperformance&conditionmonitoringatSizewellβpowerstation[R].Sizewellβ-TheFirstCy-cle,1996.50-55.
  • 5TalbottC.StrategiesforPredictive MaintenanceattheFactorylevel[R].P/PM Technology,1992.
  • 6Baldin A.Condition Based Maintenance:A PowerfulToolForModernPlantManagement[J].Terotechnica,1979,(1):119-129.
  • 7BrooksB.Theimplementationofanintegratedcondi-tionbasedmaintenancecapabilityatDofasco[J].P/PMTechnology,1997(6).
  • 8WestinghouseBN.Steamgeneratorreplacementandre-pairtechnologycontinuestoadvance[J].PowerEngi-neering,1997(4):23-27.
  • 9SRIYANANDA H,TOWILL D R.Faultdiagnosisu-singtimedomainmeasurements[J].RadioandElectron-icEngineer,1973,43(9):523-533.
  • 10胡- .液压系统多故障模式识别及状态评估研究[D].武汉:武汉理工大学,2013.

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部