摘要
6LoWPAN是基于IEEE802.15.4协议的IPv6实现,将无线传感器网络与Internet进行无缝互联。针对6LoWPAN网络中传输IP数据包能耗大的问题,提出一种基于压缩感知的数据聚合算法。算法分为两个阶段:网络初始化阶段,在兴趣区域生成树状拓扑结构;数据采集阶段,依据相同区域数据的空间相关性,节点选择性的丢包以减少数据冗余,并通过压缩感知父节点选择算法动态更新生成树。仿真实验结果表明,算法能够有效提高压缩感知数据采集效率,减少网络内节点的能量消耗,延长网络生命周期。
6LoWPAN is an IPv6 network based on IEEE 802.15.4 protocol which interconnects WSNs with Internet seamlessly. In order to solve the large energy consumption problem of transmitting IP data packets in 6LoWPAN, a data aggregation algorithm was proposed based on the compressed sensing. The algorithm is divided into two stages: in network initialization stage, it generates a tree topology structure in the data acquisition area. In data collection stage: nodes drop related data packets based on spatial correlation of them to reduce data redundancy. And it updates the tree topology structure dynamically through compression the parent node selecting algorithm of compressed sensing. Simulation results show that the algorithm can effectively improve the data acquisition efficiency of compressed sensing, reduce the energy consumption of nodes, and extend the network lifetime.
出处
《系统仿真学报》
CAS
CSCD
北大核心
2013年第11期2618-2622,共5页
Journal of System Simulation
基金
国家自然科学基金(61370094)
新世纪优秀人才支持计划(NCET-12-0164)
广东省教育部产学研结合项目(2011B090400060)
湖南省自然科学基金(13JJ1014)