期刊文献+

6LoWPAN中基于压缩感知的数据聚合算法

Based on Compressed Sensing of Data Aggregation Algorithm in 6LoWPAN
下载PDF
导出
摘要 6LoWPAN是基于IEEE802.15.4协议的IPv6实现,将无线传感器网络与Internet进行无缝互联。针对6LoWPAN网络中传输IP数据包能耗大的问题,提出一种基于压缩感知的数据聚合算法。算法分为两个阶段:网络初始化阶段,在兴趣区域生成树状拓扑结构;数据采集阶段,依据相同区域数据的空间相关性,节点选择性的丢包以减少数据冗余,并通过压缩感知父节点选择算法动态更新生成树。仿真实验结果表明,算法能够有效提高压缩感知数据采集效率,减少网络内节点的能量消耗,延长网络生命周期。 6LoWPAN is an IPv6 network based on IEEE 802.15.4 protocol which interconnects WSNs with Internet seamlessly. In order to solve the large energy consumption problem of transmitting IP data packets in 6LoWPAN, a data aggregation algorithm was proposed based on the compressed sensing. The algorithm is divided into two stages: in network initialization stage, it generates a tree topology structure in the data acquisition area. In data collection stage: nodes drop related data packets based on spatial correlation of them to reduce data redundancy. And it updates the tree topology structure dynamically through compression the parent node selecting algorithm of compressed sensing. Simulation results show that the algorithm can effectively improve the data acquisition efficiency of compressed sensing, reduce the energy consumption of nodes, and extend the network lifetime.
出处 《系统仿真学报》 CAS CSCD 北大核心 2013年第11期2618-2622,共5页 Journal of System Simulation
基金 国家自然科学基金(61370094) 新世纪优秀人才支持计划(NCET-12-0164) 广东省教育部产学研结合项目(2011B090400060) 湖南省自然科学基金(13JJ1014)
关键词 6LoWPAN 无线传感器网络 数据采集 压缩感知 数据聚合 6LoWPAN WSNs data acquisition compressed sensing data aggregation
  • 相关文献

参考文献11

  • 1Z Shelby, C Bormarm. 6LoWPAN: The Wireless Embedded Intemet [M]. Chichester, UK: John Wiley & Sons, 2009.
  • 2石光明,刘丹华,高大化,刘哲,林杰,王良君.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081. 被引量:711
  • 3李树涛,魏丹.压缩传感综述[J].自动化学报,2009,35(11):1369-1377. 被引量:205
  • 4R Submmanian, F Fekri. Sleep Scheduling and Lifetime Maximization in Sensor Networks: Ftmdamental Limits and Optimal Solutions [C]//Proc. of 5th ACM IPSN, 2006. USA: ACM, 2006.
  • 5X-Y Li, W-Z Song, W Wang. A Unified Energy-Efficient Topology for Unicast and Broadcast [C]//Prof. of the llth ACM MobiCom, 2005. USA: ACM, 2005.
  • 6G Xing, T Wang, W Jia, M Li. Rendezvous Design Algorithms for Wireless Sensor Networks with a Mobile Base Station [C]//Prof. of the 9th ACM MobiHoc, 2008. USA: ACM, 2008.
  • 7S He, J Chen, D Yau, Y Sun. Cross-layer Optimization of Correlated Data Gathering in Wireless Sensor Networks [C]//Prof. of the 7th IEEE SECON, 2010. USA: IEEE, 2010.
  • 8C Luo, F Wu, J Sun, C W Chen. Compressive Data Gathering for Large-Scale Wireless Sensor Networks [C]//MobiCom 2009. USA: ACM, 2009.
  • 9J Luo, L Xiang, C Rosenberg. Does Compressed Sensing Improve the Throughput of Wireless Sensor Networks? [C]// Proe. of the IEEE ICC, 2010. USA: IEEE, 2010.
  • 10Xiang Liu, J Luo. Compressed Data Aggregation for Energy Efficient Wireless Sensor Networks [C]//Proc. of CROWNCOM, USA: IEEE, 2011: 46-54.

二级参考文献143

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 3Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 4Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 5E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 6E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 7Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 8G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.
  • 9V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09.
  • 10S Mallat,Z Zhang.Matching pursuits with time-frequency dictionaries[J].IEEE Trans Signal Process,1993,41(12):3397-3415.

共引文献840

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部