期刊文献+

基于修正量改进的递推子空间辨识算法

Recursive 4SID Subspace Identification Algorithms with Correction Method
下载PDF
导出
摘要 传统的递推4SID子空间辨识算法存在对时变参数跟踪速度慢、易受噪声干扰等缺点,而基于滑窗的算法虽然提高了对时变参数的跟踪速度,但其算法实现复杂、计算量大。针对上述问题,首先运用矩阵方法从递推4SID子空间算法的数据压缩矩阵中分离出需剔除旧数据作用的修正量,并给出相关证明。在此基础上,结合固定遗忘因子方法设计了新的递推4SID子空间辨识算法。与传统遗忘因子方法相比,新的算法可以在选择较大遗忘因子的情况下,利用修正量有效隔断历史数据的作用,在降低对噪声的敏感度的同时提高了对时变参数的跟踪速度。与此同时,基于修正量的算法可以通过调整阈值大小改变对时变参数的跟踪速度。仿真结果验证了算法的有效性。 Several disadvantages are existed in traditional recursive 4SID algorithms, such as low tracking performance of time-varying systems and easily disturbed by noises. The recursive subspace identification algorithm based on moving window has large computation and complex realization. According to above problems, the eliminated correlation is separated from input and output Hankel matrices with the help of correction method, which is proved theoretically. Based on this thesis, a new recursive subspace identification algorithm is designed combining with fixed forgetting-factor method. Compared with traditional algorithms, the new method, in which larger forgetting factor is chosen, not only reduces the sensitivity with noises, but also has faster convergent rate because it can cut off the influence of old-data effectively. And the tracking convergent rate of the new algorithm can be adjusted by the threshold. Finally, the efficiency of this method is illustrated with two simulation examples.
出处 《系统仿真学报》 CAS CSCD 北大核心 2013年第11期2662-2666,共5页 Journal of System Simulation
基金 国家自然科学基金面上项目(61074072)
关键词 递推4SID算法 修正量 遗忘因子 子空间辨识 recursive 4SID algorithm correction forgetting factor subspace identification
  • 相关文献

参考文献14

  • 1Tmka E Subspace like identification incorporating prior information [J]. Automatica (S0005-1098), 2009, 45(1): 1046-1091.
  • 2Lovera M, Gustafsson T, Verhaegen M. Recursive subspace identification of linear and non-linear Wiener state-space models [J] Automatica (S0005-1098), 2000, 36(11): 1639-1650.
  • 3马建军,郑志强,胡德文.包含执行器动力学的子空间预测动态控制分配方法[J].自动化学报,2010,36(1):130-138. 被引量:18
  • 4Van W J W, Verhaegen M. Subspace identification of bilinear and LPV systems for open and closed-loop data [J]. Automatica (S0005-1098), 2009, 45(2): 372-381.
  • 5杨华,李少远.一种新的基于遗忘因子的递推子空间辨识算法[J].控制理论与应用,2009,26(1):69-72. 被引量:28
  • 6Zhang C, Bitmead R. Subspace system identification for training-based MIMO channel estimation [J]. Automatica (S0005-1098), 2005, 41(9): 1623-1632.
  • 7谢磊,梁武星,张泉灵,张建明,王树青.基于快速滑窗QR分解的自适应子空间辨识[J].化工学报,2008,59(6):1448-1453. 被引量:10
  • 8Baykal B, Constantinides A G. Sliding window adaptive fast QR and QR- lattice algorithms [J]. IEEE Transactions on Signal Processing: (S 1053-587X), 1998, 46(11): 2877-2887.
  • 9Oku H, Kimura H. A recursive 4SID from the input-output point of view [J]. Asian Journal of Control (S1934-6093), 1999, 1(4): 258-269.
  • 10Verhaegen M. Identification of the deterministic part of MIMO state space models given in innovations form from input output data [J]. Automatica (S0005-1098), 1994, 30(1): 61-74.

二级参考文献42

  • 1李幼凤,苏宏业,褚健.子空间模型辨识方法综述[J].化工学报,2006,57(3):473-479. 被引量:46
  • 2MERCERE G, LECOEUCHE S, LOVERA M. Recursive subspace identification based on instrumental variable unconstrained quadratic optimization[J]. International Journal of Adapt Control Signal Process, 2004, 18(4): 771 - 797.
  • 3JIANG Y, FANG H. Recursive subspace identification based on principal component analysis[C]//Proceedings of the 25th Chinese Control Conference. Harbin, China: [s.n.], 2006.
  • 4LOVERA M, GUSTAFSSON T, VERHAEGEN M. Recursive subspace identification of linear and non-linear Wiener state-space models[J]. Automatica, 2000, 36(11): 1639- 1650.
  • 5OKU H, KIMURA H. Recursive 4SID algorithms using gradient type subspace tracking[J]. Automatica, 2002, 38(6): 1035 - 1043.
  • 6ZHANG C, BITMEAD R R. Subspace system identification for training-based MIMO channel estimation[J]. Automatica, 2005, 41(9): 1623 - 1632.
  • 7YANG B. Asymptotic convergence analysis of the projection approximation subspace tracking algorithms[J]. Signal Processing, 1996, 50(1/2): 123- 136.
  • 8Alwi H, Edwards C H. Fault tolerant control using sliding modes with on-line control allocation. Automatica, 2008, 44(7): 1859-1866.
  • 9Liao F, Lum K Y, Wang J L. Constrained control allocation for linear systems with internal dynamics. In: Proceedings of the 17th World Congress on International Federation of Automatic Control. Coex, Korea: Elsevier, 2008. 3092-3097.
  • 10Ma J J, Li W Q, Zheng Z Q, Hu D W. Robust reconfigurable flight control based on control reallocation for a tailless aircraft. In: Proceedings of the 2nd International Symposium on Systens and Control in Aerospace and Astronautics. Shenzhen, China: IEEE, 2008. 1--6.

共引文献83

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部