期刊文献+

移动传感器网络的覆盖空洞差分进化算法 被引量:2

Coverage-Hole-Directed Differential Evolution Algorithm for Mobile Sensor Network
下载PDF
导出
摘要 根据无线传感器网络分布式计算的特点,结合覆盖空洞探索算法(UREA)和差分进化算法,提出了一种解决异构移动无线传感网络覆盖问题的覆盖空洞导向分布式差分算法(CHDDE)。该算法以增强网络的有效覆盖率和减少传感器节点平均移动距离为目标。通过异构节点对未覆盖区域的探索影响差分算法的差分策略,同时差分算法以节点的局部覆盖率为选择函数进行选择更新,指导种群进化,提高算法收敛速度。覆盖空洞导向分布式差分进化算法是一种非确定部署的分布式启发式算法,算法的特点在于,以未覆盖区域为导向通过差分进化计算节点的新位置,这样既无需预知所有节点的位置信息,同时加快了运算速度又节省了通信开销。最后通过仿真实验验证了算法的有效性。 Based on the characteristic of distributed computation in wireless sensor network, a dynamic network coverage strategy for heterogeneous mobile wireless sensor networks (WSNs) was proposed, which is called coverage hole-directed distributed differential evolution algorithm (CHDDE). CHDDE combines uncovered region exploration algorithm (UREA) with distributed differential evolution algorithm. The purpose of the algorithm is increasing network coverage ratio and reducing the average moved distance of sensor nodes. The algorithm uses coverage hole to guide the differential strategy in DE, and the distributed DE is used to choose the better location of nodes by the function of local coverage ratio, and thus it gets a higher convergence rate. Uncovered areas guided distributed differential evolution (DE) algorithm is a kind of non-deterministic distributed heuristic algorithm. The characteristic of the algorithm is determining the new position of the node through uncovered areas guided DE algorithm, and thus it needs not know all the node position information, and at the same time it reduces the burden on the computing time and saves the communication overhead. Simulation results show the validity of the algorithm presented.
出处 《系统仿真学报》 CAS CSCD 北大核心 2013年第11期2672-2677,共6页 Journal of System Simulation
基金 国家863项目子课题(2012AA062201) 教育部基础科研业务费(N110304005)
关键词 动态网络覆盖 异构网络 无线传感器网络 覆盖空洞 差分算法 dynamic network coverage heterogeneous network wireless sensor networks (WSNs) coverage hole differential algorithm
  • 相关文献

参考文献10

  • 1E Biagioni, K Bridges. The Application of Remote Sensor Technology to Assist the Recovery of Rare and Endangered Species [J]. The International Journal of High Performance Computing Applications (S1094-3420), 2002, 16(3): 112-120.
  • 2任彦,张思东,张宏科.无线传感器网络中覆盖控制理论与算法[J].软件学报,2006,17(3):422-433. 被引量:156
  • 3Akshay, Kumar, Harish, Dhanorkar. An efficient approach for sensor deployments in wireless sensor network [C]// Chermai: Emerging Trends in Robotics and Communication Technologies (INTERACT), 2010: 350-355.
  • 4Y Zou, K Chakrabarty. Sensor Deployment and Target Localization in Distributed Sensor Networks [J]. ACM Transactions on Embedded Computing Systems (S 1539-9087), 2004, 3( 1 ): 61-91.
  • 5周浦城,崔逊学,王书敏,蔡则苏.基于虚拟力的无线传感器网络覆盖增强算法[J].系统仿真学报,2009,21(5):1416-1419. 被引量:15
  • 6Xue Wang, Sheng Wang, Jun-Jie Ma. An Improved Co-evolutionary Partcle Swarm Optimization for Wireless Sensor Networks with Dynamic Deployment [J]. Sensors (1424-8220), 2007, 7(3): 354-370.
  • 7李明,石为人.虚拟力导向差分算法的异构移动传感网络覆盖策略[J].仪器仪表学报,2011,32(5):1043-1050. 被引量:33
  • 8Manisha J Nene, Rajendra S Deodhar, Lalit M Patnaik. UREA: Uncovered Region Exploration Algorithm for Reorganization of Mobile Sensor Nodes to Mobile Sensor Nodes to Maximize Coverage [C]// 2010 6th IEEE International Conference 6n Distributed Computing in Sensor Systems Workshops (DCOSSW). Santa Barbara, CA, USA: IEEE, 2010: 1-6.
  • 9公维宾,常义林,沈中,张颖.传感器网络中基于最小覆盖重叠的移动部署[J].系统仿真学报,2008,20(13):3604-3609. 被引量:6
  • 10Li Gaoyang, Liu Mingguang. Evolution Algorithm and its The Summary of Differential Improvements [C]// 2010 3rd International Conference on Advanced Computer Theory and Engineering (ICACTE), Chengdu, China. 2010: 153-156.

二级参考文献40

共引文献204

同被引文献16

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部