期刊文献+

计算机与通信技术

Multi-sensors fusion performance Bayesian network assessment of airborne based fusion model
下载PDF
导出
摘要 对贝叶斯网融合模型的机载多传感器性能评估进行了研究。首先对机载传感器的特性进行了分析,利用专家知识进行网络建模。给出了一种利用本地混淆矩阵(LCM)和髟次测量进行计算得出的全局混淆矩阵(GCM)计算方法,随后又给出了一种利用K次GCM和LCM迭代计算K+1次GCM的计算方法。给出一些性能指标并利用迭代计算方法对模型分别进行了目标属性未知:目标属性为我、目标属性为敌三种场景下各传感器性能计算,对结果进行了分析并和真实值进行了比较分析,证明了结果的准确性。 Multi-sensors fusion performance assessment of airborne based Bayesian network fusion models was re- searched. Firstly, the net model was built with expert knowledge after the behaviors of airborne sensors were ana- lyzed. Then, the method for calculating the global confusion matrix (GCM)was given by the calculation with the local confusion matrix(LCM) and k measurements ,followed by the method for calculating the GCM of k + 1 with the i iter- ative caculation of LCM and GCM. Some performance indicators were given, and the iterative calculations for the sensors performance under such three scenes, target is unknown, target is ally, target is enemy, were conducted. The results were comparatively analyzed with true values, and the accuracy of the results were verified.
出处 《高技术通讯》 CAS CSCD 北大核心 2013年第10期993-1000,共8页 Chinese High Technology Letters
基金 国家自然科学基金(61073186),国家自然科学基金委员会国际(地区)合作与交流(61111140391)资助项目.
关键词 性能评估 机载平台 迭代计算 贝叶斯网 performance assessment, airborne platform, iterative calculate, Bayesian network
  • 相关文献

参考文献13

  • 1Pearl J. Fusion, propagation and structuring in belief Net- works. Artificial Intelligence, 1986,29 ( 3 ) : 241-288.
  • 2Neapolitan R E. Learning Bayesian networks. New York: Pearson Prentice Hall Upper Saddle River,2004. 32-48.
  • 3Chang K C, Liggins M, Song Y. Fusion performance mod- eling for distributed tracking and fusion. In:Proceedings of the 6th International Conference on Information Fusion 2003, Queensland, Australia,2003. 567-574.
  • 4Chang K C, Sivaraman E, Liggins M. Performance model- ing for multisensor tracking and classification. In:Process- ing of SPIE Defense and Security Symposium, Orlando, Florida, 2004, (5429) : 335-342.
  • 5Guo H W, Shi W K, Deng Y, Evaluating sensor reliability in classification problems based on evidence theory. IEEE Transactions on Systems, Man, and Cyernetics-Part B : Cy- bernetics ,2006,36(5 ) :970-981.
  • 6Yan L J, Cercone N. Bayesian network modeling for evolu- tionary genetic structures. Computers and Mathematics with Applications ,2010,59:2541-2551.
  • 7Attias H. A variational Bayesian framework for graphical models. Machine Learning, 1999,37 ( 2 ) : 183-233.
  • 8Langseth H, Nielsen T D. Fusion of domain knowledge with data for structural learning in object oriented do- main. Machine Learning Research, 2004,4 ( 3 ) :339-368.
  • 9Bangs O. Object oriented Bayesian networks. Aalborg:Aal- borg University,2004.56-87.
  • 10Lam W, Nacchus F. Using new data to refine a Bayesian network. In: Processing of the 10th Conference on Uncer- tainty in Artificial Intelligence, Seattle, USA, 1994. 383-390.

二级参考文献8

  • 1唐文,胡建斌,陈钟.基于模糊逻辑的主观信任管理模型研究[J].计算机研究与发展,2005,42(10):1654-1659. 被引量:84
  • 2李小勇,桂小林.大规模分布式环境下动态信任模型研究[J].软件学报,2007,18(6):1510-1521. 被引量:138
  • 3Beth T,Borcherding M,Klein B.Valuation of trust in open network.In:Proceedings of the European Sysposium on Research in Security (ESORICS).Brighton:Springer-Verlag,1994.3-8.
  • 4Marsh S.Formalising Trust as a Computational Concept.Scotland,UK:University of Stirling,1994.
  • 5Yang S J H,Hsieh J S F,Lan B C W,et al.Composition and evaluation of trustworthy web services.In:Proceedings of the IEEE (EEE05) International workshop on Business Services Networks.Hongkong:IEEE Computer Society Press,2005.5-12.
  • 6Leymann F.(2005) Web service flow language (WSFL) 1.0.http://www-4.ibm.com/software/solutions/webservices/pdf/WSFL.pdf:IBM,2005.
  • 7Jordan D,Evdemon J.Web Services Business Process Execution Language.Version 2.0.http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf:OASIS,2008.
  • 8唐文,陈钟.基于模糊集合理论的主观信任管理模型研究[J].软件学报,2003,14(8):1401-1408. 被引量:236

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部