期刊文献+

一种改进的样例约简支持向量机 被引量:4

An improved instance reduction support vector machine
下载PDF
导出
摘要 在以前工作的基础上,提出了一种改进的样例约简支持向量机,利用相容粗糙集方法求属性约简的边界域,并从中选择样例作为候选支持向量训练支持向量机.该方法的特点是可同时对属性和样例进行约简.实验结果证实了这种方法的有效性,能有效地减少存储空间和执行时间. Based on the previous work,an improved instance reduction support vector machine was proposed in this paper. By employing tolerance rough set technique, the boundary region of the reduct is calculated and the candidate support vectors used for training support vector machine are selected from this region. Simultaneous calculations of attribute reduction and instance reduction characterize our method. The experimental results show that the proposed method is effective and can efficiently reduce the computational complexities of both time and space.
出处 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第5期596-602,共7页 Journal of Nanjing University(Natural Science)
基金 国家自然科学基金(61170040) 河北省自然科学基金(F2013201110 F2013201220) 河北大学自然科学基金(2011-228043) 河北大学教育教学改革研究项目(JX07-Y-27)
关键词 相容粗糙集 样例选择 支持向量机 最优分类超平面 tolerance rough set,instance reduction,support vector machine,optimal classification hyperplane
  • 相关文献

参考文献1

二级参考文献23

  • 1Vapnik V N. The nature of statistical learning theory[M]. New York: Springer-Verlag, 1995.
  • 2Burges C J C. A tutorial on support vector machines for pattern recognition[J]. Data Mining and Knowledge Dis- covery, 1998, 2(2): 121-167.
  • 3Smola A J, Sch61kopf B. A tutorial on support vector regre- ssion[J]. Statistics and Computing, 2004, 14(3): 199-222.
  • 4Wu Xindong, Kumar V, Quinlan J R, et al. Top 10 algo-rithms in data mining[J]. Knowledge Information System, 2008, 14(1): 1-37.
  • 5Boser B, Guyon I, Vapnik V. A training algorithm for op- timal margin classifiers[C]//Proceedings of the 5th Annual Workshop on Computational Learning Theory (COLT '92) New York, NY, USA: ACM, 1992:144-152.
  • 6Osuna E, Freund R, Girosi E An improved training algo- rithm for support vector machines[C]//Proceedings of the 1997 IEEE Workshop on Neural Networks for Signal Processing VII. Washington, DC, USA: IEEE Computer Society, 1997: 276-285.
  • 7Platt J C. Sequential minimal optimization: a fast algo- rithm for training support vector machines[M]//Advances in Kernel Methods-Support Vector Learning. Cambridge, MA: MIT Press, 1999.
  • 8Angiulli F, Astorino A. Scaling up support vector ma- chines using nearest neighbor condensation[J]. IEEE Transactions on Neural Networks, 2010, 21(2): 351-357.
  • 9Lee Y J, Huang S Y. Reduced support vector machines: a statistical theory[J]. IEEE Transactions on Neural Net- works, 2007, 18(1): 1-13.
  • 10Guo Gao, Zhang Jiangshe. Reducing examples to accel- erate support vector regression[J]. Pattern Recognition Letters, 2007, 28(16): 2173-2183.

共引文献1

同被引文献34

引证文献4

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部