期刊文献+

SSXCS:半监督学习分类系统 被引量:7

SSXCS:Semi-supervised learning classifier system
下载PDF
导出
摘要 学习分类系统作为一种自适应的机器学习技术,已经被成功地运用于解决多种学习问题.传统的学习分类系统的工作主要关注监督学习(分类)和无监督学习(聚类)环境下的研究,而学习分类系统在半监督学习环境下的效果不得而知.因此提出一种新的半监督学习分类系统(SSXCS),目的是研究学习分类系统是否能够在已知少量的已标记数据的情况下利用大量的未标记数据来提高学习性能.SSXCS先通过更新与进化得到对应的已标记规则集与无标记规则集,然后利用新提出的规则标记算法对无标记规则集进行标记,约简规则后生成最终的分类系统.实验结果表明,SSXCS能够有效地利用提供的无标记数据来提高分类器性能,同时相比较于一般的半监督学习算法,SSXCS能够取得更好或者相当的分类性能. Learning classifier system, which belongs to adaptive machine learning techniques, has been successfully applied to various learning problems. Previous works for learning classifier system mainly focused on the supervised learning manner (classification)and unsupervised learning manner(clustering). However, the research of the learning classifier system on semi-supervised learning is still untouched. To this end, a novel SemLSupervised Learning Classifier System (SSXCS)is presented, whose goal is to investigate the problem that if the learning classifier system can use small amount of the labeled data as well as large amount of the unlabeled data to improve the learning performance. The proposed SSXCS first employs the updating and evolution strategies to initialize the labeled and unlabeled rule sets. Then, the obtained unlabeled rule sets will be automatically labeled by rule labeling algorithm proposed. Finally, rule compacting is adopted to obtain the learning classifier system. The experiments have demonstrated that the proposed SSXCS is able to use the unlabeled data to improve the learning ability. Also, compared with traditional semi-supervised learning algorithms, SSXCS can achieve superior or comparable classification performance.
出处 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第5期611-618,共8页 Journal of Nanjing University(Natural Science)
基金 国家自然科学基金(61035003 61175042 61021062 61305068) 国家973项目(2009CB320702) 江苏省973项目(BK2011005) 教育部新世纪优秀人才支持计划(NCET-10-0476)
关键词 学习分类系统 半监督学习 规则标记 learning classifier system, semi supervised learning, rule labeling
  • 相关文献

参考文献21

  • 1Bull L. i.earning classifier systems: A brief introduction. Appiications of Learning Classifier Systems. Springer Berlin Heidelberg, 2004,1 - 12.
  • 2Hoiland J H. Adaptation in natural and artificial systems : An introductory analysis with applications to biology, control and artificial intel- ligence. Cambridge, MA, USA: MIT Press, 1992,228.
  • 3Goldberg D E. Genetic algorithm in search, opti- mization, and machine learning. Boston, MA, USA: Addison-Wesley Longman Publishing Co. , Inc. , 1989,372.
  • 4Sutton R S, Barto A G. Reinforcement learning: An introduction. Cambridge, MA, USA: MIT Press, 1998,322.
  • 5Stolzmann W,Bulz M. I.atent learning and action planning in robots with anticipatory classifier systems. Pier I. L, Wol{gang S, Stewart W W. I,earning Classifier Systems. London, UK: Springe>Verlag, 2000 : 301 - 320.
  • 6Schulenburg S,Ross P. An adaptive agent based economic model. Pier L I., Wolfgang S, Stewart W W. l.earning Classifier Systems. London, UK: Springer-Verlag, 2000 : 2G 3-- 282.
  • 7Richards R A. Zeroth-order shape optimization utilizing a learning classifier system. Ph.D. Dis serlation. Stanford University, Stanford, CA, 1995.
  • 8Wilson S W. Classifier fitness based on accuracy. Ev olutionary Computation, 1995,3 (2) : 149 - 175.
  • 9Wilson S W. Get real! XCS with continuous valued inputs. Pier I. I., Wolfgang S, Stewar* W W. I.earning Classifier Systems. 1.ondon, UK: Springe> Verlag, 2000 : 209 - 219.
  • 10Wilson S W. Compact rulesets from XCSI. I.anzi P I., Stolzmann W, Wilson S W. Advances in /.earning Classifier Systems = Fourth International Workshop, IWI.CS2001. Berlin Heidelberg: Springer Verlag, 2002 : 197 - 208.

同被引文献93

  • 1孙权森,曾生根,杨茂龙,王平安,夏德深.基于典型相关分析的组合特征抽取及脸像鉴别[J].计算机研究与发展,2005,42(4):614-621. 被引量:30
  • 2段华,侯伟真,贺国平,廉文娟.支持向量机的增量学习和减量学习[J].哈尔滨工程大学学报,2006,27(B07):415-421. 被引量:5
  • 3王玲,薄列峰,焦李成.密度敏感的半监督谱聚类[J].软件学报,2007,18(10):2412-2422. 被引量:95
  • 4Dalal N, Triggs B. Histograms of oriented gradients for human detection. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, CA, 2005, 886~893.
  • 5Sivic J, Zisserman A. Video google: A text retrieval approach to object matching in videos. IEEE International Conference on Computer Vision. Nice, France, 2003, 1470~1477.
  • 6Stricker M, Orengo M. Similarity of color images. In Storage and Retrieval of Image and Video Databases III, 1995, 381.
  • 7Zhang D S, Wong A, Indrawan W, et al. Content-based image retrieval using gabor texture features. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 13~15.
  • 8LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998, 86(11): 2278~2324.
  • 9Harzallah H, Jurie F, Schmid C. Combining efficient object localization and image classification. IEEE International Conference on Computer Vision. Kyoto, Japan, 2009:237~244.
  • 10Bosch A, Zisserman A, Munoz X. Image classification using random forests and ferns. IEEE International Conference on Computer Vision. Rio de Janeiro, Brazil, 2007, 1~8.

引证文献7

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部